Math Challenge - October 2021

Click For Summary
SUMMARY

The forum discussion centers on advanced mathematical concepts including Functional Analysis, Project Management, Set Theory, Group Theory, and Lie Theory. Key problems addressed include proving the compactness of a specific operator in Banach spaces, demonstrating the existence of a common partition among workers, and establishing the bijection of a polynomial mapping from \(\mathbb{N}_0^2\) to \(\mathbb{N}_0\). Notable contributions were made by users @fishturtle1 and @Office_Shredder, who provided solutions to complex algebraic and analytical challenges.

PREREQUISITES
  • Functional Analysis concepts, particularly compact operators
  • Understanding of Banach Algebras and their properties
  • Familiarity with Set Theory and the Axiom Schema of Separation
  • Knowledge of Lie Algebras and their classification
NEXT STEPS
  • Study the properties of compact operators in Functional Analysis
  • Explore the implications of the Axiom Schema of Separation in Set Theory
  • Investigate the structure and applications of Banach Algebras
  • Learn about the classification and applications of Lie Algebras in mathematics
USEFUL FOR

Mathematicians, graduate students in mathematics, and researchers in functional analysis, algebra, and set theory will benefit from this discussion.

  • #61
Not anonymous said:
Why does the sequence converge at all? I believe it must converge because of the series is strictly decreasing and it contains only positive values.

When the series is strictly decreasing, the value of successive elements must either keep decreasing without a bound (and so tend to ##-\infty ##) or must decrease indefinitely with some finite bound. Since the series contains only positive values, it cannot touch or drop below zero, meaning 0 acts as a strict lower bound to the limit toward which such a series can tend towards.

Convergence needs a certain property of the real numbers that should be mentioned. I don't want to hear the technical term but the principle. That's why I wrote that a heuristic is sufficient.
 
Physics news on Phys.org
  • #62
fresh_42 said:
Extra: (open)

elliptic_curves-png.png

Consider the two elliptic curves and observe that one has two connection components and the other one has only one. Determine the constant ##c \in [1,3]## in ##y^2 = x^3 - 2x + c## where this behavior exactly changes. What is the left-most point of this curve?

In ##y^2 = x^3 -2x + 1##, there are two components (disconnected from one another) because the curve is defined only when ##x^3 -2x + 1 \geq 0## (due to ##y## being the square root of that polynomial in ##x##) and there is a range of ##x##-values (incidentally including ##x=0##) such that ##x^3 -2x + 1## is negative over this range (this is the "gap" between the x-ranges of the two components) but is non-negative for all x-values greater than this range and also for a some range to the left of this gap.

Now, to find the value of constant ##c \in [1,3]## where curves defined by ##y^2 = x^3 - 2x + c## change from containing one component to two components, we use the fact that the .

Let us find the minima of the polynomial ##f(x) = x^3 -2x + 1##. At the minima, ##f'(x) = 0## and ##f''(x) > 0##.
##f'(x) = 3x^2 - 2 = 0 \Rightarrow x = \pm \sqrt{\dfrac{2}{3}}##
##f''(x) = 6x \Rightarrow f''(x) > 0 \iff x > 0##

Therefore ##x=\sqrt{\dfrac{2}{3}}## must correspond to a local minimum point while ##x=-\sqrt{\dfrac{2}{3}}## must correspond to a maximal point.

In the case where the curve ##y^2 = f(x)## consists of 2 components, the minimal value ##f(\sqrt{\dfrac{2}{3}})## must be negative, because otherwise, the ##f(x) < 0## only for ##x < x_1## for some ##x_1 < - \sqrt{\dfrac{2}{3}}## and so the curve be defined for all ##x \geq x_1## and won't have 2 separate components.

##f(\sqrt{\dfrac{2}{3}}) < 0 \Rightarrow \dfrac{2}{3}\sqrt{\dfrac{2}{3}} - 2\sqrt{\dfrac{2}{3}} + c < 0 \Rightarrow c < \dfrac{4}{3}\sqrt{\dfrac{2}{3}}##.
Thus, ##c_0 = \dfrac{4}{3}\sqrt{\dfrac{2}{3}} \approx 1.088662108## is the value of the constant where the change in the nature of the curve (change between consisting of two components vs. one component alone) happens.
(2)​

At the left-most point of the curve ##y^2 = x^3 -2x+c_0##, we must have ##y^2 = y = 0##. We solve for ##x## accordingly.

##x^3 - 2x + c_0 = 0 \Rightarrow x(x^2-2) = -c_0 = -\dfrac{4}{3}\sqrt{\dfrac{2}{3}}##.
(2)​

##x=\sqrt{\dfrac{2}{3}}## is obviously a solution for this equation but it is not the leftmost point. With some trial and error, or informed guesswork, followed by validation, I found that ##x=-2\sqrt{\dfrac{2}{3}}## is the other solution for equation (1). Therefore, ##(x=-2\sqrt{\dfrac{2}{3}}, y=0)## is the left-most point of the curve ##y^2 = x^3 - 2x + \dfrac{4}{3}\sqrt{\dfrac{2}{3}}##
 

Similar threads

  • · Replies 100 ·
4
Replies
100
Views
12K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 114 ·
4
Replies
114
Views
11K
  • · Replies 86 ·
3
Replies
86
Views
14K
  • · Replies 61 ·
3
Replies
61
Views
10K
  • · Replies 42 ·
2
Replies
42
Views
11K
  • · Replies 56 ·
2
Replies
56
Views
11K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 60 ·
3
Replies
60
Views
12K
  • · Replies 61 ·
3
Replies
61
Views
13K