How did Hamilton derive the characteristic function V in his essay?

Click For Summary

Discussion Overview

The discussion centers on Hamilton's derivation of the characteristic function V in his essay "On a General Method in Dynamics." Participants explore the mathematical steps Hamilton took, including the variations of functions and the principles of calculus of variations involved in the derivation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant outlines Hamilton's initial equations involving the variation of the function U and the definition of T, leading to the relationship T = U + H.
  • Another participant questions how Hamilton derived the expression for δV and what specific principles of calculus of variations were applied.
  • A different participant provides a reference to Hamilton's original writings, suggesting that reading the source material may clarify the derivation process.
  • Further elaboration includes a breakdown of equation (10) from Hamilton's paper, discussing how integration by parts and identities related to variations are utilized to derive δV.
  • There is uncertainty expressed regarding the interpretation of Hamilton's reference to "the principles of the calculus of variations," with participants discussing the methods used without reaching a consensus on Hamilton's intent.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the specific principles Hamilton used in his derivation. Multiple interpretations and approaches to understanding the derivation are presented, indicating ongoing debate and exploration of the topic.

Contextual Notes

Limitations include potential missing assumptions in Hamilton's derivation, the dependence on specific definitions of terms, and unresolved mathematical steps in the integration process.

selim
Messages
2
Reaction score
1
In Hamilton's "on a general method in dynamics", he starts with varying the function ##U## and writes the equation:
$$\delta U=\sum m(\ddot x\delta x+\ddot y\delta y+\ddot z\delta z)$$
Then he defines ##T## to be:
$$T=\frac{1}{2}\sum m (\dot x^2+\dot y^2+\dot z^2)$$
Then by ##dT=dU##, he writes:
$$T=U+H$$
Then he varies T and writes:
$$\delta T= \delta U+\delta H$$
note that he is also varying in the initial conditions, that's why he did not omit the term ##\delta H##.
Hamilton then multiplies this expression by dt and integrates and writes it as:
$$\int\sum m(dx \delta \dot x+dy \delta \dot y+dz \delta \dot z)=\int\sum m(d \dot x \delta x+d \dot y \delta y+d \dot z \delta z)+\int\delta H dt$$
Then comes the part where I got confused. He says "that is, by the principles of the calculus of variations" and writes:
$$\delta V=\sum m(\dot x \delta x+\dot y \delta y+\dot z \delta z)-\sum m(\dot a \delta a+\dot b \delta b+\dot c \delta c)+\delta H t$$
where (x,y,z) and (a,b,c) are final and initial conditions then he denotes V by the integral:
$$V=\int\sum m(\dot x \delta x+\dot y \delta y+\dot z \delta z)$$
My questions are as follows:
1-how did he get ##\delta V##, what "principle of the calculus of variations" did he use?
2-then how from that did he get the integral ##V##?
 
Last edited by a moderator:
Physics news on Phys.org
To my shame I must admit that I've never read the original writings by Hamilton on his action principle. Do you have a reference?
 
selim said:
2-then how from that did he get the integral ##V##?
Equation (B) of the paper gives the definition of ##V##: $$V \equiv \int \sum m(\dot x dx + \dot y dy + \dot z dz) = \int_0^t 2T dt \,\,\,\,\,\,\,\, (B)$$

1-how did he get ##\delta V##, what "principle of the calculus of variations" did he use?
With the definition (B) and some manipulations, you can derive the expression for ##\delta V## given in equation (A) of the paper. Start with equation (10) of the paper: $$\int \sum m(dx \delta \dot x + dy \delta \dot y + dz \delta \dot z) = \int \sum m(d \dot x \delta x + d \dot y \delta y + d \dot z \delta z) + \int \delta H dt \,\,\,\,\,\,\,\, (10)$$
The left-hand side of (10) is ##\int \delta T dt##. The last term on the right is just ##t \delta H## because ##H## is independent of time. So, (10) can be written as $$\int \delta T dt = \int \sum m(d \dot x \delta x + d \dot y \delta y + d \dot z \delta z) + t \delta H $$
The integral on the right can be manipulated using integration by parts. For example,
$$\int_0^t m d \dot x \delta x = \int_0^t m (\frac{d \dot x}{dt}) \delta x dt = m \dot x \delta x \bigg|_0^t - \int_0^t m\dot x \frac{d}{dt}(\delta x) dt$$ Since ##\frac{d}{dt}(\delta x) = \delta \dot x## and ##\dot x dt = dx##, we get $$\int_0^t m d \dot x \delta x = m \dot x \delta x \bigg|_0^t - \int_0^t m dx \delta \dot x = m \dot x \delta x - m\dot a \delta a - \int_0^t m dx \delta \dot x$$ The first term on the far right, ##m \dot x \delta x##, is to be evaluated at the time ##t## of the upper limit of the integration.
##\dot a## and ##\delta a## represent evaluation of ##\dot x## and ##\delta x## at the initial time ##t = 0##.

Doing the same thing for the ##\dot y \delta y## and ##\dot z \delta z## integrations in (10), you can see that equation (10) may be written as $$\int \delta T dt = \sum m ( \dot x \delta x + \dot y \delta y + \dot z \delta z ) - \sum m ( \dot a \delta a+ \dot b \delta b + \dot c \delta c) - \int \delta T dt - t \delta H$$ or $$2\int_0^t \delta T dt = \sum m ( \dot x \delta x + \dot y \delta y + \dot z \delta z ) - \sum m( \dot a \delta a+ \dot b \delta b + \dot c \delta c ) - t \delta H$$ According to (B), the left side is ## \delta V##. So, we finally get equation (A) $$\delta V= \Sigma m\left( \dot x \delta x + \dot y \delta y + \dot z \delta z \right) - \sum m ( \dot a \delta a+ \dot b \delta b + \dot c \delta c) - t \delta H$$

I'm unsure what Hamilton meant when he stated "by the principles of the calculus of variations". Here, we used integration by parts and the use of identities such as ##\frac{d}{dt}(\delta x) = \delta \dot x##. These are often used in derivations in the calculus of variations.
 
  • Like
  • Wow
  • Love
Likes   Reactions: SammyS, vanhees71 and selim

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K