How Do I Establish That \(\lim_{t \rightarrow \infty} S(t) = \Lambda/\mu\)?

  • Context: MHB 
  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary

Discussion Overview

The discussion revolves around establishing the limit of a function \( S(t) \) as \( t \) approaches infinity, specifically showing that \( \lim_{t \rightarrow \infty} S(t) = \Lambda/\mu \). The context includes differential equations and inequalities, with participants exploring various mathematical approaches and reasoning related to the behavior of \( S(t) \) over time.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a differential equation for \( S(t) \) and attempts to bound \( S(t) \) using a comparison theorem, suggesting that if \( S > \Lambda/\mu \), then \( dS/dt < 0 \).
  • Another participant questions the nature of the differential equation, noting that \( N(t) \) contains \( S(t) \), which complicates the classification as a linear first-order ODE.
  • Several participants discuss the use of the integrating factor method to solve the differential equation, with one suggesting that the solution would show the behavior of \( S(t) \) as \( t \) approaches infinity.
  • There is a proposal to use limits and inequalities to establish the equality in the limit, with some participants suggesting the need for \( \liminf \) and \( \limsup \) to formalize the argument.
  • One participant provides a more formal approach involving limits and inequalities, concluding that if \( \mu > 0 \), then \( \lim_{t\to \infty} S(t) = \Lambda/\mu \).

Areas of Agreement / Disagreement

Participants express differing views on the classification of the differential equation and the methods to establish the limit. While some agree on the use of certain mathematical techniques, there is no consensus on the final approach to conclusively establish the limit of \( S(t) \).

Contextual Notes

Participants note that the parameters \( \Lambda, \beta, \tau, \mu \) are constants, and there is a discussion about the implications of the terms \( H, C, C_1, C_2, T \) approaching zero as \( t \) approaches infinity. The complexity of the equation due to the dependence of \( N(t) \) on \( S(t) \) is also highlighted.

kalish1
Messages
79
Reaction score
0
Can someone here help me establish that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$,
given that:

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C)$

$N(t)=S(t)+H(t)+C(t)+C_1(t)+C_2(t)$

$\Lambda,\beta,\tau > 0$

$\text{As} \ \ t \rightarrow \infty, \ T,H,C,C_1,C_2 \rightarrow 0?$

_________________________________________________________________________________________
**My attempt:**

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \Lambda-\mu S.$ Clearly if $S > \Lambda/\mu,$ then $dS/dt<0.$ Since $dS/dt$ is bounded by $\Lambda-\mu S,$ a standard comparison theorem can be used to show that $S(t) \leq S(0)e^{-\mu t} + \frac{\Lambda}{\mu}(1-e^{-\mu t}).$ In particular, $S(0) \leq \frac{\Lambda}{\mu} \Rightarrow S(t) \leq \frac{\Lambda}{\mu}.$

Also, since $T,H,C,C_1,C_2 \rightarrow 0 \ \ \text{as} \ \ t \rightarrow \infty,$
$$(\forall \delta>0)(\exists T>0)\left(t \geq T \implies \left|-\beta\frac{S}{N}(H+C+C_1+C_2)-\tau\frac{S}{N}(T+C)\right|<\frac{\delta}{2}\right).$$ If we take $S \geq \frac{\Lambda-\delta}{\mu},$ then $\Lambda-\mu S \leq \delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \frac{3\delta}{2}.$

If we take $S \leq \frac{\Lambda+\delta}{\mu},$ then $\Lambda-\mu S \geq -\delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \geq -\frac{3\delta}{2}.$
_________________________________________________________________________________________

**Question:** How do I conclude?

I have crossposted this question here: differential equations - How to show that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$? - Mathematics Stack Exchange
 
Physics news on Phys.org
kalish said:
Can someone here help me establish that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$,
given that:

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C)$

$N(t)=S(t)+H(t)+C(t)+C_1(t)+C_2(t)$

$\Lambda,\beta,\tau > 0$

$\text{As} \ \ t \rightarrow \infty, \ T,H,C,C_1,C_2 \rightarrow 0?$

_________________________________________________________________________________________
**My attempt:**

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \Lambda-\mu S.$ Clearly if $S > \Lambda/\mu,$ then $dS/dt<0.$ Since $dS/dt$ is bounded by $\Lambda-\mu S,$ a standard comparison theorem can be used to show that $S(t) \leq S(0)e^{-\mu t} + \frac{\Lambda}{\mu}(1-e^{-\mu t}).$ In particular, $S(0) \leq \frac{\Lambda}{\mu} \Rightarrow S(t) \leq \frac{\Lambda}{\mu}.$

Also, since $T,H,C,C_1,C_2 \rightarrow 0 \ \ \text{as} \ \ t \rightarrow \infty,$
$$(\forall \delta>0)(\exists T>0)\left(t \geq T \implies \left|-\beta\frac{S}{N}(H+C+C_1+C_2)-\tau\frac{S}{N}(T+C)\right|<\frac{\delta}{2}\right).$$ If we take $S \geq \frac{\Lambda-\delta}{\mu},$ then $\Lambda-\mu S \leq \delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \frac{3\delta}{2}.$

If we take $S \leq \frac{\Lambda+\delta}{\mu},$ then $\Lambda-\mu S \geq -\delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \geq -\frac{3\delta}{2}.$
_________________________________________________________________________________________

**Question:** How do I conclude?

I have crossposted this question here: differential equations - How to show that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$? - Mathematics Stack Exchange

Are all the parameters constants? If so, it's first order linear...
 
Prove It said:
Are all the parameters constants? If so, it's first order linear...

$\Lambda,\tau,\beta,\mu$ are all constants. I understand that it's first order linear, but it's a differential inequality. How do I establish equality in the limit?
 
Last edited:
kalish said:
$\Lambda,\tau,\beta,\mu$ are all constants. I understand that it's first order linear, but it's a differential inequality. How do I establish equality in the limit?

What I am saying is that since the DE is first order linear, you can use the integrating factor method to solve it. Then once you have S(t), you can see what happens to S as t goes to infinity...
 
Prove It said:
What I am saying is that since the DE is first order linear, you can use the integrating factor method to solve it. Then once you have S(t), you can see what happens to S as t goes to infinity...

Ok. I obtain $S(t) \leq \Lambda/\mu + Ce^{-\mu t}$, which shows that $S \leq \Lambda/\mu.$ But how do get equality? Don't I need to use $liminf$ and $limsup$ somewhere? I don't know how.
 
kalish said:
Ok. I obtain $S(t) \leq \Lambda/\mu + Ce^{-\mu t}$, which shows that $S \leq \Lambda/\mu.$ But how do get equality? Don't I need to use $liminf$ and $limsup$ somewhere? I don't know how.

You aren't listening to me. SOLVE THE DE!
 
It's not a linear first order ODE since N(t) contains S(t).

And I see that you already have an answer on MSE.
 
I like Serena said:
It's not a linear first order ODE since N(t) contains S(t).

And I see that you already have an answer on MSE.

The answer on MSE is incomplete.

Can you help me finish this? This is what I have:

Note that $\lim\limits_{t \rightarrow \infty}\frac{dS}{dt}=\lim\limits_{t \rightarrow \infty}\bigg[\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \bigg] = \lim\limits_{t \rightarrow \infty}(\Lambda-\mu S).$ Solving the differential equation within the limit, we obtain $S(t)=\frac{\Lambda}{\mu}+e^{-\mu t}.$ Applying the limit, we see that $\lim\limits_{t \rightarrow \infty}S = \frac{\Lambda}{\mu}$.
 
kalish said:
The answer on MSE is incomplete.

Can you help me finish this? This is what I have:

Note that $\lim\limits_{t \rightarrow \infty}\frac{dS}{dt}=\lim\limits_{t \rightarrow \infty}\bigg[\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \bigg] = \lim\limits_{t \rightarrow \infty}(\Lambda-\mu S).$

Yep. We can split the limit and make the small stuff go away.

This should be written out though and your original attempt is not mathematically solid.

Solving the differential equation within the limit, we obtain $S(t)=\frac{\Lambda}{\mu}+e^{-\mu t}.$ Applying the limit, we see that $\lim\limits_{t \rightarrow \infty}S = \frac{\Lambda}{\mu}$.

This looks a bit tricky.

Let's make it a bit more formal.

We have:

$$\forall \epsilon >0 \quad \exists T$$ such that $$\forall t>T: \left|\frac{dS}{dt} - (\Lambda-\mu S) \right| < \epsilon$$.

From this we can conclude:
$$
\left|\frac{dS}{dt} e^{\mu t} - (\Lambda e^{\mu t}-\mu S e^{\mu t}) \right| < \epsilon e^{\mu t}$$

$$\left|\frac{d}{dt}(S e^{\mu t}) - \Lambda e^{\mu t} \right| < \epsilon e^{\mu t}$$

$$(\Lambda - \epsilon) e^{\mu t} < \frac{d}{dt}(S e^{\mu t}) < (\Lambda + \epsilon) e^{\mu t}$$

$$\left(\frac \Lambda \mu - \frac \epsilon {|\mu|}\right) e^{\mu t} + C_1< S e^{\mu t} < \left(\frac \Lambda \mu + \frac \epsilon {|\mu|}\right) e^{\mu t} + C_2$$

$$\frac \Lambda \mu - \frac \epsilon {|\mu|} + C_1 e^{-\mu t} < S < \frac \Lambda \mu + \frac \epsilon {|\mu|} + C_2 e^{-\mu t}
$$

In other words, $S$ is squeezed to $$\frac \Lambda \mu$$, but only if $\mu > 0$.

So if $\mu > 0$, then:
$$\lim_{t\to \infty} S(t) = \frac \Lambda \mu$$
 
Last edited:

Similar threads

  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 28 ·
Replies
28
Views
4K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
46
Views
5K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K