How Do I Establish That \(\lim_{t \rightarrow \infty} S(t) = \Lambda/\mu\)?

  • Context: MHB 
  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The discussion focuses on establishing that \(\lim_{t \rightarrow \infty} S(t) = \frac{\Lambda}{\mu}\) for the differential equation \(\frac{dS}{dt} = \Lambda - \mu S - \beta \frac{S}{N}(H+C+C_1+C_2) - \tau \frac{S}{N}(T+C)\). The parameters \(\Lambda, \beta, \tau, \mu\) are constants, and as \(t\) approaches infinity, \(T, H, C, C_1, C_2\) approach zero. The analysis employs a comparison theorem and the properties of first-order linear differential equations to demonstrate that \(S(t)\) converges to \(\frac{\Lambda}{\mu}\) as \(t\) increases.

PREREQUISITES
  • Understanding of first-order linear differential equations
  • Familiarity with the comparison theorem in differential equations
  • Knowledge of limits and their properties in calculus
  • Basic understanding of differential inequalities
NEXT STEPS
  • Study the integrating factor method for solving first-order linear ODEs
  • Explore the application of the comparison theorem in differential equations
  • Learn about the behavior of solutions to differential equations as \(t \to \infty\)
  • Investigate the implications of parameter changes in differential equations
USEFUL FOR

Mathematicians, students studying differential equations, and anyone interested in the behavior of dynamical systems over time.

kalish1
Messages
79
Reaction score
0
Can someone here help me establish that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$,
given that:

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C)$

$N(t)=S(t)+H(t)+C(t)+C_1(t)+C_2(t)$

$\Lambda,\beta,\tau > 0$

$\text{As} \ \ t \rightarrow \infty, \ T,H,C,C_1,C_2 \rightarrow 0?$

_________________________________________________________________________________________
**My attempt:**

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \Lambda-\mu S.$ Clearly if $S > \Lambda/\mu,$ then $dS/dt<0.$ Since $dS/dt$ is bounded by $\Lambda-\mu S,$ a standard comparison theorem can be used to show that $S(t) \leq S(0)e^{-\mu t} + \frac{\Lambda}{\mu}(1-e^{-\mu t}).$ In particular, $S(0) \leq \frac{\Lambda}{\mu} \Rightarrow S(t) \leq \frac{\Lambda}{\mu}.$

Also, since $T,H,C,C_1,C_2 \rightarrow 0 \ \ \text{as} \ \ t \rightarrow \infty,$
$$(\forall \delta>0)(\exists T>0)\left(t \geq T \implies \left|-\beta\frac{S}{N}(H+C+C_1+C_2)-\tau\frac{S}{N}(T+C)\right|<\frac{\delta}{2}\right).$$ If we take $S \geq \frac{\Lambda-\delta}{\mu},$ then $\Lambda-\mu S \leq \delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \frac{3\delta}{2}.$

If we take $S \leq \frac{\Lambda+\delta}{\mu},$ then $\Lambda-\mu S \geq -\delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \geq -\frac{3\delta}{2}.$
_________________________________________________________________________________________

**Question:** How do I conclude?

I have crossposted this question here: differential equations - How to show that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$? - Mathematics Stack Exchange
 
Physics news on Phys.org
kalish said:
Can someone here help me establish that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$,
given that:

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C)$

$N(t)=S(t)+H(t)+C(t)+C_1(t)+C_2(t)$

$\Lambda,\beta,\tau > 0$

$\text{As} \ \ t \rightarrow \infty, \ T,H,C,C_1,C_2 \rightarrow 0?$

_________________________________________________________________________________________
**My attempt:**

$\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \Lambda-\mu S.$ Clearly if $S > \Lambda/\mu,$ then $dS/dt<0.$ Since $dS/dt$ is bounded by $\Lambda-\mu S,$ a standard comparison theorem can be used to show that $S(t) \leq S(0)e^{-\mu t} + \frac{\Lambda}{\mu}(1-e^{-\mu t}).$ In particular, $S(0) \leq \frac{\Lambda}{\mu} \Rightarrow S(t) \leq \frac{\Lambda}{\mu}.$

Also, since $T,H,C,C_1,C_2 \rightarrow 0 \ \ \text{as} \ \ t \rightarrow \infty,$
$$(\forall \delta>0)(\exists T>0)\left(t \geq T \implies \left|-\beta\frac{S}{N}(H+C+C_1+C_2)-\tau\frac{S}{N}(T+C)\right|<\frac{\delta}{2}\right).$$ If we take $S \geq \frac{\Lambda-\delta}{\mu},$ then $\Lambda-\mu S \leq \delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \leq \frac{3\delta}{2}.$

If we take $S \leq \frac{\Lambda+\delta}{\mu},$ then $\Lambda-\mu S \geq -\delta.$

Hence $\frac{dS}{dt}=\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \geq -\frac{3\delta}{2}.$
_________________________________________________________________________________________

**Question:** How do I conclude?

I have crossposted this question here: differential equations - How to show that $\lim\limits_{t \rightarrow \infty} S(t) = \Lambda/\mu$? - Mathematics Stack Exchange

Are all the parameters constants? If so, it's first order linear...
 
Prove It said:
Are all the parameters constants? If so, it's first order linear...

$\Lambda,\tau,\beta,\mu$ are all constants. I understand that it's first order linear, but it's a differential inequality. How do I establish equality in the limit?
 
Last edited:
kalish said:
$\Lambda,\tau,\beta,\mu$ are all constants. I understand that it's first order linear, but it's a differential inequality. How do I establish equality in the limit?

What I am saying is that since the DE is first order linear, you can use the integrating factor method to solve it. Then once you have S(t), you can see what happens to S as t goes to infinity...
 
Prove It said:
What I am saying is that since the DE is first order linear, you can use the integrating factor method to solve it. Then once you have S(t), you can see what happens to S as t goes to infinity...

Ok. I obtain $S(t) \leq \Lambda/\mu + Ce^{-\mu t}$, which shows that $S \leq \Lambda/\mu.$ But how do get equality? Don't I need to use $liminf$ and $limsup$ somewhere? I don't know how.
 
kalish said:
Ok. I obtain $S(t) \leq \Lambda/\mu + Ce^{-\mu t}$, which shows that $S \leq \Lambda/\mu.$ But how do get equality? Don't I need to use $liminf$ and $limsup$ somewhere? I don't know how.

You aren't listening to me. SOLVE THE DE!
 
It's not a linear first order ODE since N(t) contains S(t).

And I see that you already have an answer on MSE.
 
I like Serena said:
It's not a linear first order ODE since N(t) contains S(t).

And I see that you already have an answer on MSE.

The answer on MSE is incomplete.

Can you help me finish this? This is what I have:

Note that $\lim\limits_{t \rightarrow \infty}\frac{dS}{dt}=\lim\limits_{t \rightarrow \infty}\bigg[\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \bigg] = \lim\limits_{t \rightarrow \infty}(\Lambda-\mu S).$ Solving the differential equation within the limit, we obtain $S(t)=\frac{\Lambda}{\mu}+e^{-\mu t}.$ Applying the limit, we see that $\lim\limits_{t \rightarrow \infty}S = \frac{\Lambda}{\mu}$.
 
kalish said:
The answer on MSE is incomplete.

Can you help me finish this? This is what I have:

Note that $\lim\limits_{t \rightarrow \infty}\frac{dS}{dt}=\lim\limits_{t \rightarrow \infty}\bigg[\Lambda-\mu S-\beta \frac{S}{N}(H+C+C_1+C_2)-\tau \frac{S}{N}(T+C) \bigg] = \lim\limits_{t \rightarrow \infty}(\Lambda-\mu S).$

Yep. We can split the limit and make the small stuff go away.

This should be written out though and your original attempt is not mathematically solid.

Solving the differential equation within the limit, we obtain $S(t)=\frac{\Lambda}{\mu}+e^{-\mu t}.$ Applying the limit, we see that $\lim\limits_{t \rightarrow \infty}S = \frac{\Lambda}{\mu}$.

This looks a bit tricky.

Let's make it a bit more formal.

We have:

$$\forall \epsilon >0 \quad \exists T$$ such that $$\forall t>T: \left|\frac{dS}{dt} - (\Lambda-\mu S) \right| < \epsilon$$.

From this we can conclude:
$$
\left|\frac{dS}{dt} e^{\mu t} - (\Lambda e^{\mu t}-\mu S e^{\mu t}) \right| < \epsilon e^{\mu t}$$

$$\left|\frac{d}{dt}(S e^{\mu t}) - \Lambda e^{\mu t} \right| < \epsilon e^{\mu t}$$

$$(\Lambda - \epsilon) e^{\mu t} < \frac{d}{dt}(S e^{\mu t}) < (\Lambda + \epsilon) e^{\mu t}$$

$$\left(\frac \Lambda \mu - \frac \epsilon {|\mu|}\right) e^{\mu t} + C_1< S e^{\mu t} < \left(\frac \Lambda \mu + \frac \epsilon {|\mu|}\right) e^{\mu t} + C_2$$

$$\frac \Lambda \mu - \frac \epsilon {|\mu|} + C_1 e^{-\mu t} < S < \frac \Lambda \mu + \frac \epsilon {|\mu|} + C_2 e^{-\mu t}
$$

In other words, $S$ is squeezed to $$\frac \Lambda \mu$$, but only if $\mu > 0$.

So if $\mu > 0$, then:
$$\lim_{t\to \infty} S(t) = \frac \Lambda \mu$$
 
Last edited:

Similar threads

  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 28 ·
Replies
28
Views
4K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
46
Views
5K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K