MHB How do I expand $f(z)$ into a power series?

Click For Summary
To expand the function f(z) = (4 + 3z)/((z + 1)(z + 2)^2) into a power series, it is suggested to use partial fraction decomposition. The expression can be broken down into simpler fractions, which can then be expanded individually. The discussion highlights the importance of determining the radius of convergence for the series, with considerations for different regions based on the singularities of the function. Participants also explore whether to take derivatives of the series and how to combine terms effectively. Overall, the approach emphasizes careful manipulation of series and understanding convergence.
Dustinsfl
Messages
2,217
Reaction score
5
$\displaystyle f(z) = \frac{4 + 3z}{(z + 1)(z + 2)^2}$

How do I find the power series?

I know that

$\displaystyle\frac{1}{z+1} = \frac{1}{1-(-z)} = \sum_{n}^{\infty}(-z)^n$

and

$\displaystyle\frac{1}{(z+2)^2} = \frac{d}{dz} \frac{-1}{z+2} = \frac{d}{dz} \frac{-1}{1 - (-z-1)} = \sum_{n}^{\infty} -n(-z-1)^{n-1}$

But how do I do the above expression?
 
Physics news on Phys.org
You should specify at what point do you want the power series to be centered at.
 
z = 0
 
Okay, I suggest to start with partial fractions. (Wink)
 
Note that $4+3z = 2(z+1)+(z+2)$ and $1 = (z+2)-(z+1)$.
 
ThePerfectHacker said:
Okay, I suggest to start with partial fractions. (Wink)

Set like Real partial fractions?

$\displaystyle\frac{A}{z+1}+\frac{B}{z+2}+\frac{C+Dz}{(z+2)^2}$
 
dwsmith said:
Set like Real partial fractions?

$\displaystyle\frac{A}{z+1}+\frac{B}{z+2}+\frac{C+Dz}{(z+2)^2}$

No, be careful,
$$ \frac{A}{z+1} + \frac{B}{z+2} + \frac{C}{(z+2)^2}$$

Or you can be more creative like Sherlock.
 
dwsmith said:
$\displaystyle f(z) = \frac{4 + 3z}{(z + 1)(z + 2)^2}$ How do I find the power series?

Perhaps you have to find all Laurent series expansions centered at $0$ . In such a case we have three regions: $C_1\equiv\;0<|z|<1$ , $C_2\equiv\;1<|z|<2$ and $C_3\equiv\;2<|z|<+\infty$ . For example for the first addend we have $\dfrac{1}{1+z}=\displaystyle\sum_{n=0}^{+\infty}(-1)^nz^n$ if $|z|<1$ and $\dfrac{1}{1+z}=\dfrac{1}{z}\dfrac{1}{1+1/z}=\displaystyle\sum_{n=0}^{+\infty}\dfrac{(-1)^n}{z^{n+1}}$ if $|z|>1$ etc.
 
Last edited:
From partial fractions,

$\displaystyle\frac{1}{1-(-z)}-\frac{1}{1-(-z-1)}+2\frac{d}{dz}\frac{-1}{1-(-z-1)}$

By theorem,

The derivative of the sum converges to same L of the sum. So can I disregard taking the derivative of the sum and have this:

$\displaystyle\sum_n^{\infty}\left[(-z)^n-3(-z-1)^n\right]$
 
  • #10
Is this ok to do or do I need to take the derivative and then combine?

$\displaystyle\sum_n^{\infty}\left[(-z)^n-(-z-1)^n-2n(-z-1)^{n-1}\right]$
 
Last edited:
  • #11
dwsmith said:
Is this ok to do or do I need to take the derivative and then combine?

$\displaystyle\sum_n^{\infty}\left[(-z)^n-(-z-1)^n-2n(-z-1)^{n-1}\right]$
Yes, this is correct. I don't know what you meant about a theorem saying the derivative of the sum is the limit of the sum in the other post, and I don't think it's true.
 
  • #12
How can I find the radius of convergence for this series?
 
  • #13
dwsmith said:
How can I find the radius of convergence for this series?

Can I find each radius of convergence separately? Or is there a way to combine this? Or is there a way to directly do this sum?
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
888
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K