How do I separate a function into its even and odd parts?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    even Function
Click For Summary
SUMMARY

The discussion focuses on separating a function into its even and odd parts using the function \( g(\theta) \). The even part is calculated as \( g_e = \frac{g(\theta) + g(-\theta)}{2} \), resulting in \( g_e = \frac{\pi}{2} \). The odd part is determined using \( g_o = \frac{g(\theta) - g(-\theta)}{2} \), leading to \( g_o = \theta + \begin{cases} -\frac{\pi}{2}, & 0\leq\theta\leq\pi\\ \frac{\pi}{2}, & -\pi\leq\theta < 0 \end{cases} \). It is crucial to note that this process does not alter the function's nature but rather separates it into distinct components.

PREREQUISITES
  • Understanding of function properties, specifically even and odd functions.
  • Familiarity with mathematical notation and piecewise functions.
  • Knowledge of basic calculus concepts, including function evaluation.
  • Ability to manipulate algebraic expressions and equations.
NEXT STEPS
  • Study the properties of even and odd functions in more depth.
  • Learn about piecewise function definitions and their applications.
  • Explore Fourier series and their relation to function decomposition.
  • Investigate the implications of separating functions into even and odd parts in signal processing.
USEFUL FOR

Mathematicians, educators, students in calculus or advanced mathematics courses, and anyone interested in function analysis and decomposition techniques.

Dustinsfl
Messages
2,217
Reaction score
5
There was a question but I figured it out.
$$
g(\theta) = \begin{cases}
\theta, & 0\leq\theta\leq\pi\\
\theta+\pi, & -\pi\leq\theta < 0
\end{cases}
$$
So $g_e=\frac{g(\theta)+g(-\theta)}{2}$ and $g_o=\frac{g(\theta)-g(-\theta)}{2}$
\begin{alignat}{3}
g_e & = & \frac{\begin{cases}
\theta, & 0\leq\theta\leq\pi\\
\theta+\pi, & -\pi\leq\theta < 0
\end{cases}+\begin{cases}
-\theta, & 0\leq -\theta\leq\pi\\
-\theta+\pi, & -\pi\leq -\theta < 0
\end{cases}}{2}\\
& = & \frac{\begin{cases}
\theta, & 0\leq\theta\leq\pi\\
\theta+\pi, & -\pi\leq\theta < 0
\end{cases}+\begin{cases}
-\theta, & 0\geq \theta\geq -\pi\\
-\theta+\pi, & \pi\geq \theta > 0
\end{cases}}{2}\\
& = & \frac{\pi}{2}
\end{alignat}
For $g_o$, we have
\begin{alignat*}{3}
g_o & = & \frac{\begin{cases}
\theta, & 0\leq\theta\leq\pi\\
\theta + \pi, & -\pi\leq\theta < 0
\end{cases} -
\begin{cases}
-\theta, & 0\leq -\theta\leq\pi\\
-\theta + \pi, & -\pi\leq -\theta < 0
\end{cases}}{2}\\
& = & \frac{\begin{cases}
\theta, & 0\leq\theta\leq\pi\\
\theta + \pi, & -\pi\leq\theta < 0
\end{cases} +
\begin{cases}
\theta, & 0\geq \theta\geq -\pi\\
\theta - \pi, & \pi\geq \theta > 0
\end{cases}}{2}\\
& = & \theta +
\begin{cases} -\frac{\pi}{2}, & 0\leq\theta\leq\pi\\
\frac{\pi}{2}, & -\pi\leq\theta < 0
\end{cases}
\end{alignat*}
 
Physics news on Phys.org
It should be emphasized that you are NOT "making" the function "even" or "odd", you are separating it into its "even" and "odd' parts.

For any function, f(x), f_e(x)=\frac{f(x)+ f(-x)}{2} is an even function, f_o(x)= \frac{f(x)- f(-x)}{2} is an odd function, and f(x)= f_e(x)+ f_o(x)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 5 ·
Replies
5
Views
2K