Undergrad How Do Magnetic Forces Differ Between Magnets and Wires?

Click For Summary
The discussion centers on the differences in magnetic interactions between magnets and current-carrying wires. It explains that iron filings align with magnetic field lines due to their magnetic moments, experiencing torque that aligns them with the field. The force between magnets acts along the magnetic field lines, while the force between two wires is perpendicular due to the Lorentz force, which depends on the velocity and magnetic field direction. The key distinction lies in the magnetic field gradient; for magnets, the force aligns with the gradient, whereas for wires, the field is azimuthal and the gradient is radial. Understanding these differences clarifies the apparent contradiction in magnetic force directions.
nemuritai
Messages
2
Reaction score
0
I understand the iron fillings become little magnets all pointing in the same north south direction similar to the spin aligned electrons in the permanent magnet.
Similarly, a compass near a wire traces out the magnetic field lines ie North/South.

My question is how do I reconcile the fact that the force of a magnet on another magnet is along the field lines whereas for two wires it is perpendicular? The latter is from the fact that the lorentz force is perpendicular to v and B, but why is the force of two magnets alongside the magnetic field instead of perpendicular?

Is the force alongside the B field in one and perpendicular in the other? What error have I made? Magnetic_field_of_bar_magnets_attracting.png
 
Physics news on Phys.org
An iron filing has a magnetic moment that experiences a torque that rotates it so that its long axis lines up with the local field lines. The force on it is along the direction of the magnetic field gradient which is not necessarily along the local field lines. In the case of the bar magnets that you show in the photo, the magnetic field and its gradient are roughly in the same direction. In the case of the infinite wire the magnetic field is in the azimuthal direction but its gradient is in the radial direction.
 
  • Like
Likes vanhees71 and nemuritai
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

Replies
3
Views
3K
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
1K
  • · Replies 42 ·
2
Replies
42
Views
6K
Replies
3
Views
441
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
2K