Dale
Mentor
- 36,600
- 15,412
Yes, this is correct.carrz said:Some equations actually do need "k", not because it is a constant and because that equation is specific, but because such equation is general and "k" is variable from case to case. Like Hooke's law with its spring constant.
I think that I have been very clear and consistent in saying that the vacuum permittivity and permeability are properties of the system of units.carrz said:There is a difference. Permittivity and permeability are either independent properties on their own, like spring constant in Hooke's law, or they are properties of something else. Are you saying permittivity and permeability are not properties of vacuum, but rather properties of that 'q' charge or whatever else we have in those equations?
Unit conventions most certainly can and do produce actual numbers "out of thin air". They are conventions. In modern SI units c, ε0, and μ0 are not experimentally measured quantities, they are defined exact constants according to the conventions. There are good historical reasons behind the definitions, but nonetheless, in modern SI they are defined not measured.carrz said:c is an actual number. Unit conventions can not produce any actual numbers out of thin air, it has to be relative to experimental measurements.
Consider the example I gave above of Newton's 2nd law in customary units: ∑f=kma where f was in lbf, k was 32.17 lbf s^2/(ft lbm), m was in lbm, and a was in ft/s^2. Suppose that we measure lbf using a standardized spring and lbm using a standardized balance scale and a using standardized rods and clocks.
Now, if I wanted to consider k to be a constant of the universe and perform experiments to measure it then I could certainly do so. Every time I measure it I would get some number and an associated experimental error. I could look into my experiments to find out what the source of the variability was and gradually improve them to measure k with less and less error. At some point, my experimental technique would be so well-refined that the dominant source of error is my ability to physically realize my units, i.e. variability in my standards.
At that point, we can switch to a new system of units where k is defined and use the definition of k to define the unit with the most variable standard in terms of the other standards. This is, in fact, how SI units treat k, ε0, μ0, and c. The only difference between them is that k is defined as a dimensionless 1 (SI is consistent with Newton's 2nd law) and the others are defined as dimensionful constants (SI is inconsistent with Maxwell's equations), but they are all defined in SI, not measured.
Last edited: