- #1

- 235

- 1

How can something have a definitive edge if space can always be more granular?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

In summary, space can always be more granular, so something with an edge would have an impact that is negligible in most cases.

- #1

- 235

- 1

How can something have a definitive edge if space can always be more granular?

Physics news on Phys.org

- #2

Homework Helper

- 1,687

- 344

Based on the scale of your problem and desired precision, you can assume away most of those questions of granularity. Clearly, if you are working with lasers in the optical frequencies, your definition of smooth will be very different from that of someone looking into bouncing a soccer ball on concrete.

- #3

- 235

- 1

If you wanted to get down to the nth degree; it seems something must have a boundary but, on the other hand, it can't have a boundary because space can always be more granular.RUber said:

Based on the scale of your problem and desired precision, you can assume away most of those questions of granularity. Clearly, if you are working with lasers in the optical frequencies, your definition of smooth will be very different from that of someone looking into bouncing a soccer ball on concrete.

- #4

Science Advisor

Homework Helper

- 12,360

- 7,106

- #5

- 235

- 1

Seems like calculus is as close as one can get to an answer.

- #6

Science Advisor

Homework Helper

- 12,360

- 7,106

What is the question?Pjpic said:Seems like calculus is as close as one can get to an answer.

A boundary is a mathematical concept that refers to the edge or limit of a set or region. It can also be thought of as the point of separation between two different sets or regions.

The concept of boundary and infinitesimal are closely related in mathematics. Infinitesimal quantities are considered to be infinitely small and are often used to describe the behavior of a function or set near its boundary.

No, an infinitesimal cannot be a boundary. Boundaries are defined as points or edges, while infinitesimals are infinitely small quantities. However, infinitesimals can play a role in describing the behavior of a function or set near its boundary.

Boundaries and infinitesimals are essential concepts in calculus. Infinitesimals are used to define derivatives and integrals, which are fundamental tools in calculus. Boundaries are also important in determining the behavior of a function or set at a specific point.

Yes, boundaries and infinitesimals have many real-world applications, especially in fields such as physics and engineering. For example, the concept of an infinitesimal is used in the study of motion, and boundaries are used in defining the limits of a system or object.

Share:

- Replies
- 45

- Views
- 51K

- Replies
- 36

- Views
- 1K

- Replies
- 4

- Views
- 1K

- Replies
- 12

- Views
- 912

- Replies
- 1

- Views
- 1K

- Replies
- 4

- Views
- 1K

- Replies
- 1

- Views
- 909

- Replies
- 8

- Views
- 870

- Replies
- 2

- Views
- 2K

- Replies
- 30

- Views
- 1K