How Do We Find the Kernel and Image Bases Using Matrix C?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Basis Image Kernel
Click For Summary

Discussion Overview

The discussion revolves around finding the kernel and image bases of a linear transformation defined by a matrix \(A\) in the context of linear algebra. Participants explore the transformation matrix \(C\) derived from \(A\) and its implications for determining the kernel and image bases.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose that the kernel can be found by solving either \(AX=0\) or \(C\mathbf{x} = \mathbf{0}\).
  • Others suggest that the image can be determined from the column vectors of the transformation matrix \(C\).
  • A participant expresses confusion regarding the representation of a matrix \(X\) in terms of the basis \(B\), questioning why it is represented as \(\mathbf{x} = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}\).
  • One participant derives the kernel as \(\ker (L_A) = \{X \in \mathbb{C}^{2\times 2} \mid A \cdot X = O\}\) and provides a detailed calculation leading to a proposed basis for the kernel.
  • Another participant confirms the correctness of the kernel derivation and suggests that the first two column vectors of \(C\) might form the basis for the image.
  • There is a discussion about expressing the basis vectors in terms of the original basis \(B\), with some participants confirming the relationships.

Areas of Agreement / Disagreement

Participants generally agree on the methods to find the kernel and image bases, but there is some uncertainty regarding the specific basis vectors derived from the transformation matrix \(C\) and their representation in terms of the original basis \(B\).

Contextual Notes

Some participants express uncertainty about the representation of matrices with respect to a basis and the implications for finding the kernel and image. There are also unresolved questions about the specific basis vectors derived from the transformation matrix \(C\).

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.

We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}

I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}

I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.

Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.

We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}

I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}

I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.

Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)

Hey mathmari!

Yes.

Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

So we can find the kernel by either solving $AX=0$ or by solving $C\mathbf x = \mathbf 0$. (Thinking)

To find the image, consider that each column in $C$ represents a matrix in the image.
Can we find a basis from the column vectors in $C$? (Wondering)
 
I like Serena said:
Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

Why is that the representation? I got stuck right now. (Wondering)
I like Serena said:
So we can find the kernel by either solving $AX=0$ or by solving $C\mathbf x = \mathbf 0$. (Thinking)

Ah ok! So the kernel is $\ker (L_A)=\{X\in \mathbb{C}^{2\times 2} \mid L_A(X)=O \}=\{X\in \mathbb{C}^{2\times 2} \mid A\cdot X=O \}$.

So \begin{align*}A\cdot X=O\Rightarrow \begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\begin{pmatrix} w & x\\ y&z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{pmatrix}-w+2y & -x+2z \\ 2w-4y & 2x-4z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{cases} -w+2y=0 \\ -x+2z=0 \\ 2w-4y=0 \\ 2x-4z=0\end{cases}\Rightarrow \begin{cases} w=2y \\ x=2z\end{cases}\end{align*} So we get the kernel \begin{equation*}\left \{\begin{pmatrix} 2y & 2z\\ y&z\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}=\left \{y\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}+z\begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}\end{equation*}
The basis is then \begin{equation*}\left \{\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}, \begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\right \}=\left \{2\begin{pmatrix} 1 & 0\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 1&0\end{pmatrix}, 2\begin{pmatrix} 0 & 1\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 0&1\end{pmatrix}\right \}=\left \{2b_1+b_3, 2b_2+b_4\right \}\end{equation*}
where $b_1=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \ b_2=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \ b_3=\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \ b_4=\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}$.

Is everything correct? (Wondering)
I like Serena said:
To find the image, consider that each column in $C$ represents a matrix in the image.
Can we find a basis from the column vectors in $C$? (Wondering)

The first two vectors of $C$ form the basis, or not? (Wondering)
 
mathmari said:
I like Serena said:
Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

Why is that the representation? I got stuck right now.

The meaning of the representation $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$ with respect to a basis $\{\mathbf b_1, \mathbf b_2, \mathbf b_3, \mathbf b_4\}$ is that $\mathbf x = w\mathbf b_1 + x\mathbf b_2 + y\mathbf b_3 + z\mathbf b_4$.
It's just that if we don't mention a basis, it is assumed that we mean the standard basis $\{\mathbf e_1, \mathbf e_2, \mathbf e_3, \mathbf e_4\}$.

I like Serena said:
Ah ok! So the kernel is $\ker (L_A)=\{X\in \mathbb{C}^{2\times 2} \mid L_A(X)=O \}=\{X\in \mathbb{C}^{2\times 2} \mid A\cdot X=O \}$.

So \begin{align*}A\cdot X=O\Rightarrow \begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\begin{pmatrix} w & x\\ y&z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{pmatrix}-w+2y & -x+2z \\ 2w-4y & 2x-4z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{cases} -w+2y=0 \\ -x+2z=0 \\ 2w-4y=0 \\ 2x-4z=0\end{cases}\Rightarrow \begin{cases} w=2y \\ x=2z\end{cases}\end{align*} So we get the kernel \begin{equation*}\left \{\begin{pmatrix} 2y & 2z\\ y&z\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}=\left \{y\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}+z\begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}\end{equation*}
The basis is then \begin{equation*}\left \{\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}, \begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\right \}=\left \{2\begin{pmatrix} 1 & 0\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 1&0\end{pmatrix}, 2\begin{pmatrix} 0 & 1\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 0&1\end{pmatrix}\right \}=\left \{2b_1+b_3, 2b_2+b_4\right \}\end{equation*}
where $b_1=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \ b_2=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \ b_3=\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \ b_4=\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}$.

Is everything correct?

Yep. All correct.
And we'll find the same result if we solve $C\mathbf x = \mathbf 0$.

I like Serena said:
The first two vectors of $C$ form the basis, or not?

Yep. Can we write those 2 vectors in $C$ as a basis? (Wondering)
 
I like Serena said:
The meaning of the representation $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$ with respect to a basis $\{\mathbf b_1, \mathbf b_2, \mathbf b_3, \mathbf b_4\}$ is that $\mathbf x = w\mathbf b_1 + x\mathbf b_2 + y\mathbf b_3 + z\mathbf b_4$.
It's just that if we don't mention a basis, it is assumed that we mean the standard basis $\{\mathbf e_1, \mathbf e_2, \mathbf e_3, \mathbf e_4\}$.

Ah ok!

I like Serena said:
Yep. Can we write those 2 vectors in $C$ as a basis? (Wondering)

We have that the basis is \begin{equation*}\left \{\begin{pmatrix}-1 \\ 0 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ -1 \\ 0 \\ 2\end{pmatrix}\right \}=\left \{-b_1+2b_3, -b_2+2b_4\right \}\end{equation*} right? (Wondering)
 
mathmari said:
Ah ok!

We have that the basis is \begin{equation*}\left \{\begin{pmatrix}-1 \\ 0 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ -1 \\ 0 \\ 2\end{pmatrix}\right \}=\left \{-b_1+2b_3, -b_2+2b_4\right \}\end{equation*} right? (Wondering)

Yep. (Nod)
 
I like Serena said:
Yep. (Nod)

Great! Thank you very much! (Mmm)
 

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
31
Views
3K
Replies
4
Views
2K