MHB How Do We Find the Kernel and Image Bases Using Matrix C?

Click For Summary
To find the kernel and image bases of the linear transformation defined by matrix A, the transformation matrix C can be utilized. The kernel is determined by solving the equation A·X = 0 or equivalently C·x = 0, leading to the kernel basis consisting of matrices formed by specific linear combinations of the basis vectors. The image can be derived from the columns of matrix C, with the first two columns forming the basis for the image. Both methods yield consistent results, confirming the correctness of the calculations. Understanding these concepts is crucial for working with linear transformations in matrix algebra.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.

We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}

I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}

I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.

Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $A\in \mathbb{C}^{2\times 2}$ and $L_A:\mathbb{C}^{2\times 2}\rightarrow \mathbb{C}^{2\times 2}, \ X\mapsto A\cdot X$.

We consider the matrix \begin{equation*}A=\begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\end{equation*} and the basis \begin{equation*}B=\left \{\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\right \}\end{equation*}

I have calculated the transformation matrix of $L_A$ in respect to the basis, which is the following:
\begin{equation*}C=\begin{pmatrix}-1 & 0 &2 &0 \\ 0 &-1 & 0 & 2 \\ 2 & 0 & -4 & 0 \\ 0 & 2 & 0 & -4\end{pmatrix}\end{equation*}

I want to determine a basis of the kernel of $L_A$ and a basis of the image of $L_A$.

Can we determine these using the transformation matrix $C$ ? Or how can we calculated the bases? (Wondering)

Hey mathmari!

Yes.

Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

So we can find the kernel by either solving $AX=0$ or by solving $C\mathbf x = \mathbf 0$. (Thinking)

To find the image, consider that each column in $C$ represents a matrix in the image.
Can we find a basis from the column vectors in $C$? (Wondering)
 
I like Serena said:
Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

Why is that the representation? I got stuck right now. (Wondering)
I like Serena said:
So we can find the kernel by either solving $AX=0$ or by solving $C\mathbf x = \mathbf 0$. (Thinking)

Ah ok! So the kernel is $\ker (L_A)=\{X\in \mathbb{C}^{2\times 2} \mid L_A(X)=O \}=\{X\in \mathbb{C}^{2\times 2} \mid A\cdot X=O \}$.

So \begin{align*}A\cdot X=O\Rightarrow \begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\begin{pmatrix} w & x\\ y&z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{pmatrix}-w+2y & -x+2z \\ 2w-4y & 2x-4z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{cases} -w+2y=0 \\ -x+2z=0 \\ 2w-4y=0 \\ 2x-4z=0\end{cases}\Rightarrow \begin{cases} w=2y \\ x=2z\end{cases}\end{align*} So we get the kernel \begin{equation*}\left \{\begin{pmatrix} 2y & 2z\\ y&z\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}=\left \{y\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}+z\begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}\end{equation*}
The basis is then \begin{equation*}\left \{\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}, \begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\right \}=\left \{2\begin{pmatrix} 1 & 0\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 1&0\end{pmatrix}, 2\begin{pmatrix} 0 & 1\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 0&1\end{pmatrix}\right \}=\left \{2b_1+b_3, 2b_2+b_4\right \}\end{equation*}
where $b_1=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \ b_2=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \ b_3=\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \ b_4=\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}$.

Is everything correct? (Wondering)
I like Serena said:
To find the image, consider that each column in $C$ represents a matrix in the image.
Can we find a basis from the column vectors in $C$? (Wondering)

The first two vectors of $C$ form the basis, or not? (Wondering)
 
mathmari said:
I like Serena said:
Let $X=\begin{pmatrix} w&x\\y&z\end{pmatrix}$. Then the representation of $X$ with respect to the basis $B$ is $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$, isn't it?

Why is that the representation? I got stuck right now.

The meaning of the representation $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$ with respect to a basis $\{\mathbf b_1, \mathbf b_2, \mathbf b_3, \mathbf b_4\}$ is that $\mathbf x = w\mathbf b_1 + x\mathbf b_2 + y\mathbf b_3 + z\mathbf b_4$.
It's just that if we don't mention a basis, it is assumed that we mean the standard basis $\{\mathbf e_1, \mathbf e_2, \mathbf e_3, \mathbf e_4\}$.

I like Serena said:
Ah ok! So the kernel is $\ker (L_A)=\{X\in \mathbb{C}^{2\times 2} \mid L_A(X)=O \}=\{X\in \mathbb{C}^{2\times 2} \mid A\cdot X=O \}$.

So \begin{align*}A\cdot X=O\Rightarrow \begin{pmatrix}-1 & 2 \\ 2 & -4\end{pmatrix}\begin{pmatrix} w & x\\ y&z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{pmatrix}-w+2y & -x+2z \\ 2w-4y & 2x-4z\end{pmatrix}=\begin{pmatrix} 0&0 \\ 0&0\end{pmatrix}\Rightarrow \begin{cases} -w+2y=0 \\ -x+2z=0 \\ 2w-4y=0 \\ 2x-4z=0\end{cases}\Rightarrow \begin{cases} w=2y \\ x=2z\end{cases}\end{align*} So we get the kernel \begin{equation*}\left \{\begin{pmatrix} 2y & 2z\\ y&z\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}=\left \{y\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}+z\begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\middle |y,z\in \mathbb{C}\right \}\end{equation*}
The basis is then \begin{equation*}\left \{\begin{pmatrix} 2 & 0\\ 1&0\end{pmatrix}, \begin{pmatrix} 0 & 2\\ 0&1\end{pmatrix}\right \}=\left \{2\begin{pmatrix} 1 & 0\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 1&0\end{pmatrix}, 2\begin{pmatrix} 0 & 1\\ 0&0\end{pmatrix}+\begin{pmatrix} 0 & 0\\ 0&1\end{pmatrix}\right \}=\left \{2b_1+b_3, 2b_2+b_4\right \}\end{equation*}
where $b_1=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}, \ b_2=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix} , \ b_3=\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}, \ b_4=\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}$.

Is everything correct?

Yep. All correct.
And we'll find the same result if we solve $C\mathbf x = \mathbf 0$.

I like Serena said:
The first two vectors of $C$ form the basis, or not?

Yep. Can we write those 2 vectors in $C$ as a basis? (Wondering)
 
I like Serena said:
The meaning of the representation $\mathbf x = \begin{pmatrix}w\\x\\y\\z\end{pmatrix}$ with respect to a basis $\{\mathbf b_1, \mathbf b_2, \mathbf b_3, \mathbf b_4\}$ is that $\mathbf x = w\mathbf b_1 + x\mathbf b_2 + y\mathbf b_3 + z\mathbf b_4$.
It's just that if we don't mention a basis, it is assumed that we mean the standard basis $\{\mathbf e_1, \mathbf e_2, \mathbf e_3, \mathbf e_4\}$.

Ah ok!

I like Serena said:
Yep. Can we write those 2 vectors in $C$ as a basis? (Wondering)

We have that the basis is \begin{equation*}\left \{\begin{pmatrix}-1 \\ 0 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ -1 \\ 0 \\ 2\end{pmatrix}\right \}=\left \{-b_1+2b_3, -b_2+2b_4\right \}\end{equation*} right? (Wondering)
 
mathmari said:
Ah ok!

We have that the basis is \begin{equation*}\left \{\begin{pmatrix}-1 \\ 0 \\ 2 \\ 0\end{pmatrix}, \begin{pmatrix}0 \\ -1 \\ 0 \\ 2\end{pmatrix}\right \}=\left \{-b_1+2b_3, -b_2+2b_4\right \}\end{equation*} right? (Wondering)

Yep. (Nod)
 
I like Serena said:
Yep. (Nod)

Great! Thank you very much! (Mmm)
 

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
31
Views
3K
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K