How Do You Calculate Capacitance in a DC Circuit with a Fully Charged Capacitor?

  • Thread starter Thread starter Lambda96
  • Start date Start date
  • Tags Tags
    Capacitor Circuit
Click For Summary

Homework Help Overview

The discussion revolves around calculating the capacitance in a DC circuit with a fully charged capacitor. Participants explore the behavior of capacitors in DC circuits and the implications of their assumptions regarding circuit configuration and component values.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to calculate capacitance using impedance in a parallel circuit, questioning the correctness of their calculations and assumptions about the capacitor's state. Some participants raise concerns about the use of frequency versus angular frequency in the calculations.

Discussion Status

Participants are actively engaging in reviewing calculations and providing feedback. There is a recognition of errors in the original calculations, particularly regarding the frequency used, and suggestions for correcting these mistakes have been made.

Contextual Notes

There is a focus on the assumptions made about the capacitor being fully charged and the implications for circuit behavior. Participants are also addressing formatting issues in their mathematical expressions.

Lambda96
Messages
233
Reaction score
77
Homework Statement
What does the circuit look like and what are the values of resistor ##R## and capacitance ##C##?
Relevant Equations
none
Hi,

I am not sure if I have calculated the task correctly

Bildschirmfoto 2023-06-07 um 12.53.12.png

I have now assumed that the capacitor does not need to be charged and is therefore fully charged. In a DC circuit, a capacitor acts like an infinitely large resistor or like an open switch, so I assumed that it is a parallel circuit and that it looks like this.

Bildschirmfoto 2023-06-11 um 11.59.27.png


The resistor then has the following value ##R=100 \Omega##.

Using the impedance and the value for ##R##, I can then calculate the value for ##C##.

The value for the impedance in parallel circuit is

$$|Z|=\frac{1}{\sqrt{R^-2+\omega^2 C^2}}$$

##C## can then be calculated as follows

$$C=\frac{R^2-Z^2}{R \omega z}$$

If I now substitute all the values into the above formula, I get the following ##C=9.7 \cdot 10^{-4}F##.
 
Physics news on Phys.org
Lambda96 said:
ƒHomework Statement: What does the circuit look like and what are the values of resistor ##R## and capacitance ##C##?
Relevant Equations: none

Hi,

I am not sure if I have calculated the task correctly

View attachment 327711
I have now assumed that the capacitor does not need to be charged and is therefore fully charged. In a DC circuit, a capacitor acts like an infinitely large resistor or like an open switch, so I assumed that it is a parallel circuit and that it looks like this.

View attachment 327712

The resistor then has the following value ##R=100 \Omega##.

Using the impedance and the value for ##R##, I can then calculate the value for ##C##.

The value for the impedance in parallel circuit is

$$|Z|=\frac{1}{\sqrt{R^-2+\omega^2 C^2}}$$

##C## can then be calculated as follows

$$C=\frac{R^2-Z^2}{R \omega z}$$

If I now substitute all the values into the above formula, I get the following ##C=9.7 \cdot 10^{-4}F##.
It looks like you used frequency, ƒ, rather than angular frequency. Remember, ##\omega=2\pi f ## .

LaTeX tip:
To write ##R^{-2}## rather than ##R^-2##, place the ##-2## in braces { }, e.g. ##\{ -2 \}## .
 
  • Like
Likes   Reactions: Lambda96 and berkeman
Thanks SammyS for your help and for looking over my calculation, thanks also for the tip on how to write ##R^{-2}## in latex 👍 👍👍

You are right, unfortunately I used the frequency of ##50Hz## in the calculation instead of ##\omega=2 \pi 50Hz##. Then the result for ##C## is as follows, ##C=0.015 F##
 
Lambda96 said:
Thanks SammyS for your help and for looking over my calculation, thanks also for the tip on how to write ##R^{-2}## in latex 👍 👍👍

You are right, unfortunately I used the frequency of ##50Hz## in the calculation instead of ##\omega=2 \pi 50Hz##. Then the result for ##C## is as follows, ##C=0.015 F##
The decimal point is in the wrong place.

Simply divide your original answer by ##2\pi## .
 
  • Like
Likes   Reactions: Lambda96

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
3K
Replies
20
Views
2K
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K