MHB How Do You Calculate the Distance Between Two Ships Using Angles of Depression?

  • Thread starter Thread starter xyz_1965
  • Start date Start date
  • Tags Tags
    Ships
AI Thread Summary
To calculate the distance between two ships using angles of depression, the height of the airplane is crucial, set at 3500 feet. The angle of depression to ship P is 48°, leading to a calculated distance PD of approximately 3151.41 feet, while the angle to ship Q is 25°, resulting in a distance DQ of about 7505.77 feet. The total distance between the two ships is the sum of PD and DQ, equating to 10,657.18 feet. After rounding to the nearest tenth, the final distance is 10,660 feet. Understanding the angles of depression is essential for accurate calculations.
xyz_1965
Messages
73
Reaction score
0
Points P and Q are in the same vertical plane as an airplane at point R. When the height of the airplane is 3500 feet, the angle of depression to P is 48° and that to Q is 25°. Find the distance between the two ships. Round the answer to the nearest 10th of a foot.

Solution:

From R, I will drop a perpendicular to a point I call D. The distance between the two ships is PD + DQ.

To find PD:

tan (48°) = 3500/PD

PD = 3500/tan (48°)

PD = 3151.41 feet

To find DQ:

tan (25°) = 3500/DQ

DQ = 3500/tan (25°)

DQ = 7505.77 feet

Distance between the two ships:

PD + DQ = 3151.41 + 7505.77

PD + DQ = 10, 657.18

Rounded to the neatest 10th of a foot, I get
10,660 feet.

Is this correct? I hope so after all this work.
 
Mathematics news on Phys.org
Are you clear on what "angle of depression" means? Since the angle of depression, the angle down from a horizontal to the line from R to P, is 48 ° the angle RPD is 90- 48= 42 °. Similarly the angle RQD is 90- 25= 65 °.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top