How Do You Calculate the Hall Potential Difference in a Copper Strip?

Click For Summary
SUMMARY

The Hall potential difference (ΔV) across a copper strip can be calculated using the formula ΔV = (B * I) / (n * e * t), where B is the magnetic field strength (0.65 T), I is the current (23 A), n is the charge carrier density (8.47 × 1028 electrons/m3), and t is the thickness of the strip (150 μm). The discussion clarifies that the Hall voltage depends on the thickness of the strip rather than its width, as derived from the balance of electric and magnetic forces acting on the charge carriers. Understanding this derivation is crucial for accurately applying the Hall effect in practical scenarios.

PREREQUISITES
  • Understanding of the Hall effect and its applications
  • Familiarity with basic electromagnetism concepts
  • Knowledge of charge carrier density and its significance in conductive materials
  • Ability to manipulate and rearrange algebraic equations
NEXT STEPS
  • Study the derivation of the Hall voltage formula in detail
  • Explore applications of the Hall effect in sensors and measurement devices
  • Learn about the properties of copper as a conductor and its charge carrier dynamics
  • Investigate the impact of varying magnetic field strengths on Hall voltage
USEFUL FOR

Students in physics and engineering, particularly those studying electromagnetism, electrical engineering, and materials science, will benefit from this discussion. It is also valuable for educators looking to clarify the Hall effect in practical applications.

PFStudent
Messages
169
Reaction score
0

Homework Statement



12. A strip of copper {150{\textcolor[rgb]{1.00,1.00,1.00}{.}}{\mu}m} thick and {4.5{\textcolor[rgb]{1.00,1.00,1.00}{.}}mm} wide is placed in a uniform magnetic field {\vec{B}} of magnitude {0.65{\textcolor[rgb]{1.00,1.00,1.00}{.}}T}, with {\vec{B}} perpendicular to the strip. A current {i = 23{\textcolor[rgb]{1.00,1.00,1.00}{.}}A} is then sent through the strip such that a Hall potential difference V appears across the width of the strip.

Calculate V. (The number of charge carriers per unit volulme for copper is 8.47{\times}{10^{28}} electrons/m^{3}).

Homework Equations



<br /> q = n_{e}e, {\textcolor[rgb]{1.00,1.00,1.00}{.}}{\textcolor[rgb]{1.00,1.00,1.00}{.}}{\textcolor[rgb]{1.00,1.00,1.00}{.}}{n_{e}} = \pm1, \pm 2, \pm 3,...,<br />

e \equiv elementary charge

<br /> e = 1.60217646 {\times} 10^{-19}{\textcolor[rgb]{1.00,1.00,1.00}{.}}C<br />

<br /> {n_{e}} = {\pm}N, {\textcolor[rgb]{1.00,1.00,1.00}{.}}{\textcolor[rgb]{1.00,1.00,1.00}{.}}{\textcolor[rgb]{1.00,1.00,1.00}{.}}{N} = 1, 2, 3,...,<br />

<br /> {N_{V}} = \frac{n_{e}}{V}<br />

<br /> {n_{e}} = {N_{V}}{V}<br />

<br /> {N_{V}} = {\frac{BI}{{\Delta{V}}{le}}}<br />

Where, {\Delta{V}} is the Hall potential difference.

The Attempt at a Solution



This seems like a straight forward problem, here is how I worked through it.

<br /> {\Delta{V}} = {\frac{BI}{{N_{V}}{le}}}<br />

Let I = current, {\Delta}{V} = V, and \left({\frac{N}{V}}\right) be the number of charge carriers per unit volume. So, since we're dealing with electrons,

<br /> {N_{V}} = -{\left({\frac{N}{V}}\right)}<br />

Where,

{\left({\frac{N}{V}}\right)} = {{8.47}{\times}{10^{28}}} electrons/{m^{3}}

However, since they gave me two distances: thickness ({t}) and width ({w}); which one is {l}?

I thought at first, it was the width because isn't that how the Hall potential difference is defined, as the potential across the width of a strip?

The book used the thickness, so I am wondering why?

Any help is appreciated.

Thanks,

-PFStudent
 
Last edited:
Physics news on Phys.org
To understand why the formula for Hall voltage contains thickness (not width) you need to review its derivation. If your text isn't clear on the matter, check this out: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/hall.html"
 
Last edited by a moderator:
Hey,

Doc Al said:
To understand why the formula for Hall voltage contains thickness (not width) you need to review its derivation. If your text isn't clear on the matter, check this out: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/hall.html"

Thanks for the link Doc Al.

So, I noticed they always used the thickness in their examples,..so in a nutshell is that how the Hall Potential is defined?

That is to say, in defining the Hall Potential--if we consider a thin strip (say like copper) of thickness {t}, width {w}, and length {l}; in a magnetic field {\vec{B}} perpendicular to the face of the strip, carrying a current {I} through one end of the strip and out the other.

Then there is a potential difference {\Delta{V}} as a result of the electric force {{\vec{F}}_{E}} and magnetic force {{\vec{F}}_{B}} opposing each other due to the orientation of the two fields. This is a result of the magnetic field pushing the positive charges to one side of the thin strip. The placement of the positive charges on one side of the strip creates an electric field with the negative charges left on the other side of the strip. Resulting in the creation of a potential difference {\Delta{V}} known as the Hall Potential Difference. Given as,

<br /> {\Delta{V}} = {\frac{BI}{{N_{V}}{te}}}<br />

Is that all right?

Thanks,

-PFStudent
 
Last edited by a moderator:
Hey,

Yea, still a little unclear on this.

Any help would be appreciated.

Thanks,

-PFStudent
 
The hall voltage is established when the resultant force exerted on the charge carriers is zero...that is when F_E=F_B
 
Hey,

rock.freak667 said:
The hall voltage is established when the resultant force exerted on the charge carriers is zero...that is when F_E=F_B

Ok, that makes sense but that does not quite explain why the Hall Potential is dependent on the thickness {t}, of the strip. Why is that?

Thanks,

-PFStudent
 
Well it all comes from the derivation of the formula
start with
F_E=F_B
=> Ee=Bev
E=Bv
Re:E=\frac{V_H}{d} where d= thickness

\frac{V_H}{d}=Bv
Re: v=\frac{I}{nAe}

\frac{V_H}{d}=\frac{BI}{nAe}
so that:

V_H=\frac{Bd}{nAe}
now A=td where l is the length of the material
V_H=\frac{Bd}{ntde}
V_H=\frac{B}{net}
so t is actually the length which is basically the width
 
PFStudent said:
Ok, that makes sense but that does not quite explain why the Hall Potential is dependent on the thickness {t}, of the strip. Why is that?
Sorry I didn't get back to this sooner. In a nutshell, while the Hall voltage is defined across the width of the strip, it only depends on the thickness of the strip not the width. If you check out the derivation on the link I gave, you'll see how it comes about.

rock.freak667 said:
Well it all comes from the derivation of the formula
start with
F_E=F_B
=> Ee=Bev
E=Bv
Good.

Re:E=\frac{V_H}{d} where d= thickness
I'd say that:
E=\frac{V_H}{W}, where W = width, not thickness.

\frac{V_H}{d}=Bv
Re: v=\frac{I}{nAe}

\frac{V_H}{d}=\frac{BI}{nAe}
so that:

V_H=\frac{Bd}{nAe}
now A=td where l is the length of the material
V_H=\frac{Bd}{ntde}
V_H=\frac{B}{net}
so t is actually the length which is basically the width
I can't quite follow this. I'd rewrite it this way:

E = vB

\frac{V_H}{W} = vB
(where W is width)

v = \frac{I}{n e A}

where A is cross-sectional area = Width*thickness = Wt, so:
\frac{V_H}{W} = \frac{I B}{n e Wt}

Note how the width cancels out, leaving the dependence on thickness:
V_H = \frac{I B}{n e t}
 
Well I guess width and thickness would depend on which way the electrons are flowing in the conducting material...as in my diagram..d as in the height of the conducting material.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
5K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 5 ·
Replies
5
Views
15K
  • · Replies 9 ·
Replies
9
Views
10K
Replies
7
Views
9K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K