MHB How Do You Convert a Trigonometric Expression into a Sine Equation Form?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Convert Sin
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$-2 \sqrt{3}\cos\left({\theta}\right)+6\sin\left({\theta}\right) $$

Convert to

$$A\sin\left({B\left[\theta-C\right]}\right)+D$$

I couldn't find an example how to do this coversion
 
Mathematics news on Phys.org
karush said:
$$-2 \sqrt{3}\cos\left({\theta}\right)+6\sin\left({\theta}\right) $$

Convert to

$$A\sin\left({B\left[\theta-C\right]}\right)+D$$

I couldn't find an example how to do this coversion

I would recommend switching to a single cosine first, then use an angular shift to get the sine. Does that help?
 
Do you know that cosine and sine are $\dfrac{\pi}{2}$ (or 90 degrees) out-of-phase?
 
$$a\cos\left({\theta}\right)+b\sin\left({\theta}\right)=R\cos\left({\theta-\alpha}\right)$$
 
Last edited:
karush said:
$$a\cos\left({\theta}\right)+b\sin\left({\theta}\right)=R\cos\left({\theta-\alpha}\right)$$

Right. So you can find $R$ and $\alpha$ from the usual rectangular-to-polar equations. Then, if you recall that $\sin(\theta+\pi/2)=\cos(\theta)$, as Deveno mentioned earlier, you can finish.
 
$$R=4\sqrt{3}$$
$$ \alpha=\frac{2\pi}{3}$$
$$4\sqrt{3}\sin\left({\theta}-\frac{\pi}{6}\right)$$
 
Alternatively,

$$6\sin x-2\sqrt3\cos x=c\sin(x+d)$$

$$c\sin\left(\frac{\pi}{2}+d\right)=6$$

$$c\sin(\pi+d)=2\sqrt3$$

$$c\cos d=6$$

$$c\sin d=-2\sqrt3$$

$$\tan d=-\frac{1}{\sqrt3}\Rightarrow d=-\frac{\pi}{6}$$

$$c\sin\left(\frac{\pi}{2}-\frac{\pi}{6}\right)=6\Rightarrow c=4\sqrt3$$

$$6\sin x-2\sqrt3\cos x=4\sqrt3\sin\left(x-\frac{\pi}{6}\right)$$
 
Well that save $\cos\left({\theta}\right)$ to
$\sin\left({\theta}\right)$ conversion
How do know to use + or -. :cool:
 
Can you be more specific?
 

Similar threads

Replies
2
Views
929
Replies
1
Views
1K
Replies
11
Views
2K
Replies
10
Views
2K
Replies
1
Views
1K
Replies
4
Views
2K
Back
Top