How Do You Convert a Trigonometric Expression into a Sine Equation Form?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Convert Sin
Click For Summary
SUMMARY

The discussion focuses on converting the trigonometric expression $$-2 \sqrt{3}\cos\left({\theta}\right)+6\sin\left({\theta}\right)$$ into the form $$A\sin\left({B\left[\theta-C\right]}\right)+D$$. The recommended approach involves first converting to a single cosine function using the identity $$a\cos\left({\theta}\right)+b\sin\left({\theta}\right)=R\cos\left({\theta-\alpha}\right)$$, where $$R=4\sqrt{3}$$ and $$\alpha=\frac{2\pi}{3}$$. The final result is expressed as $$4\sqrt{3}\sin\left({\theta}-\frac{\pi}{6}\right)$$, demonstrating the conversion process effectively.

PREREQUISITES
  • Understanding of trigonometric identities
  • Knowledge of rectangular-to-polar conversions
  • Familiarity with sine and cosine phase shifts
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation of the rectangular-to-polar conversion formulas
  • Learn about phase shifts in trigonometric functions
  • Explore the application of trigonometric identities in simplifying expressions
  • Practice converting between sine and cosine forms of trigonometric equations
USEFUL FOR

Mathematics students, educators, and anyone interested in mastering trigonometric conversions and identities will benefit from this discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$-2 \sqrt{3}\cos\left({\theta}\right)+6\sin\left({\theta}\right) $$

Convert to

$$A\sin\left({B\left[\theta-C\right]}\right)+D$$

I couldn't find an example how to do this coversion
 
Mathematics news on Phys.org
karush said:
$$-2 \sqrt{3}\cos\left({\theta}\right)+6\sin\left({\theta}\right) $$

Convert to

$$A\sin\left({B\left[\theta-C\right]}\right)+D$$

I couldn't find an example how to do this coversion

I would recommend switching to a single cosine first, then use an angular shift to get the sine. Does that help?
 
Do you know that cosine and sine are $\dfrac{\pi}{2}$ (or 90 degrees) out-of-phase?
 
$$a\cos\left({\theta}\right)+b\sin\left({\theta}\right)=R\cos\left({\theta-\alpha}\right)$$
 
Last edited:
karush said:
$$a\cos\left({\theta}\right)+b\sin\left({\theta}\right)=R\cos\left({\theta-\alpha}\right)$$

Right. So you can find $R$ and $\alpha$ from the usual rectangular-to-polar equations. Then, if you recall that $\sin(\theta+\pi/2)=\cos(\theta)$, as Deveno mentioned earlier, you can finish.
 
$$R=4\sqrt{3}$$
$$ \alpha=\frac{2\pi}{3}$$
$$4\sqrt{3}\sin\left({\theta}-\frac{\pi}{6}\right)$$
 
Alternatively,

$$6\sin x-2\sqrt3\cos x=c\sin(x+d)$$

$$c\sin\left(\frac{\pi}{2}+d\right)=6$$

$$c\sin(\pi+d)=2\sqrt3$$

$$c\cos d=6$$

$$c\sin d=-2\sqrt3$$

$$\tan d=-\frac{1}{\sqrt3}\Rightarrow d=-\frac{\pi}{6}$$

$$c\sin\left(\frac{\pi}{2}-\frac{\pi}{6}\right)=6\Rightarrow c=4\sqrt3$$

$$6\sin x-2\sqrt3\cos x=4\sqrt3\sin\left(x-\frac{\pi}{6}\right)$$
 
Well that save $\cos\left({\theta}\right)$ to
$\sin\left({\theta}\right)$ conversion
How do know to use + or -. :cool:
 
Can you be more specific?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 70 ·
3
Replies
70
Views
6K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K