How do you know if the focal length is positive or negative?

Click For Summary
Determining whether the focal length is positive or negative depends on the sign conventions used in optics, which vary for mirrors and lenses. The focal point's location is influenced by the geometry and physics of the system, regardless of the conventions. For spherical mirrors, a concave mirror has a defined focal point in front of the mirror, while a convex mirror has it behind. Ray diagrams can clarify the situation, but additional context, such as the mirror's orientation, is crucial for accurate interpretation. Understanding how light rays interact with the mirror and the physical meaning of the focal point can aid in resolving any confusion.
bluesteels
Messages
28
Reaction score
1
Homework Statement
An object 0.600 cm tall is placed 16.5 cm to the left of the vertex
of a concave spherical mirror having a radius of curvature of 22.0 cm.
(a) Draw a principal-ray diagram showing the formation of the image.
(b) Determine the nature (real or virtual)
of the image
Relevant Equations
none
In this problem, it doesn't tell you where is the focal length.

So how do you know if it is in front or behind the object?
 
Physics news on Phys.org
What do you know about the focal length of a spherical mirror?
 
2428px-Concave_mirror.svg.png
 
To answer the question in the title...
In optics, there are numerous sign conventions and definitions.
So, "positive" or "negative" depends on conventions (for mirrors and for lenses).

However, with ray diagrams,
the focal points are determined by the physics and the geometry (independent of the conventions).
 
Yes, I'm stumped too. "to the left of" isn't that helpful if there's no other left-right reference. Did you post the entire problem? Is there a drawing with left-right information? Like which way the mirror is oriented. I guess, worst case, you could solve it both ways.

I guess there is a weak convention in optics that rays start in the z-axis direction which is drawn from left to right (usually). Like @Lnewqban's drawing. So that would be my guess.

PS: Maybe I misunderstood. There is clear information about the focal length when they say the mirror is concave. Look that up. If the rays hit the other side of the sphere, they would have said convex.
 
It might help to ask yourself:

What happens to a light ray when it meets the mirror?

What is the physical meaning of the “focal point”?
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
Replies
5
Views
2K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
988
  • · Replies 5 ·
Replies
5
Views
3K