MHB How Do You Prove Limits at Infinity?

  • Thread starter Thread starter goody1
  • Start date Start date
  • Tags Tags
    Definition Limit
AI Thread Summary
To prove limits at infinity, the discussion focuses on two specific limits: the first, $$\lim_{x\to\infty}\frac{x-1}{x+2} = 1$$, requires demonstrating that for any $\varepsilon > 0$, there exists an $N$ such that $$\left|\frac{x-1}{x+2} - 1\right| < \varepsilon$$ for $x > N$. The second limit, $$\lim_{x\to-1}\frac{-1}{(x+1)^2} = -\infty$$, involves showing that for any $M$, a $\delta > 0$ can be found such that $$\frac{-1}{(x+1)^2} < -M$$ when $|x+1| < \delta$. The conversation emphasizes the importance of simplifying expressions and finding appropriate bounds for $N$ and $\delta$. Ultimately, understanding these definitions and calculations is crucial for proving limits at infinity effectively.
goody1
Messages
16
Reaction score
0
Hi, can anybody help me with this two limits? I have to prove them by the definition of limit. Thank you in advance.
View attachment 9630 View attachment 9631
 

Attachments

  • limitka.png
    limitka.png
    1.1 KB · Views: 130
  • limitka2.png
    limitka2.png
    1.3 KB · Views: 110
Mathematics news on Phys.org
goody said:
Hi, can anybody help me with this two limits? I have to prove them by the definition of limit. Thank you in advance.
Hi Goody, and welcome to MHB!

To prove that $$\lim_{x\to\infty}\frac{x-1}{x+2} = 1$$, you have to show that, given $\varepsilon > 0$, you can find $N$ such that $$\left|\frac{x-1}{x+2} - 1\right| < \varepsilon$$ whenever $x>N$.

So, first you should simplify $$\left|\frac{x-1}{x+2} - 1\right|$$. Then you should see how large $x$ has to be in order to make that expression less than $\varepsilon$.

To prove that $$\lim_{x\to-1}\frac{-1}{(x+1)^2} = -\infty$$, you have to show that, given $M$, you can find $\delta>0$ such that $$\frac{-1}{(x+1)^2} < -M$$ whenever $|x+1| < \delta$. That is actually an easier calculation than the first one, so you might want to try that one first.
 
Hi Opalg! Do you think I got it correct?
View attachment 9633
 

Attachments

  • what.png
    what.png
    2.8 KB · Views: 108
goody said:
Hi Opalg! Do you think I got it correct?
Not quite, although you started correctly. The limit in this case is as $x\to\infty$, so you want to see what happens when $x$ gets large. This means that the inequality $\dfrac3{|x+2|}<\varepsilon$ has to hold for all $x$ greater than $N$ (where you think of $N$ as being a large number).

Write the inequality as $|x+2| > \dfrac3\varepsilon$, and you see that this will be true if $x > \dfrac3\varepsilon -2$. So you can take $N = \dfrac3\varepsilon -2$. More simply, you could take $N = \dfrac3\varepsilon$, which will satisfy the required condition with a bit to spare.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top