How Do You Simplify Trigonometric Expressions Using Basic Identities?

Click For Summary

Homework Help Overview

The discussion revolves around simplifying the expression (1+cot^2 x) / (cot^2 x) in terms of sinx and/or cosx, focusing on trigonometric identities and algebraic manipulation.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants share their attempts at simplifying the expression, questioning the correctness of their methods and exploring alternative approaches. Some suggest using the identity relating cotangent and tangent to simplify the expression further.

Discussion Status

There is ongoing exploration of different methods to simplify the expression, with some participants providing guidance on alternative approaches. Multiple interpretations of the problem are being discussed, particularly regarding the application of trigonometric identities.

Contextual Notes

Participants express uncertainty about their solutions and inquire about the validity of certain identities, such as whether sinx + cosx can equal 1, indicating a need for clarification on foundational concepts.

Jen23
Messages
12
Reaction score
0

Homework Statement


Express (1+cot^2 x) / (cot^2 x) in terms of sinx and/or cosx

Homework Equations


cot(x) = 1/tan(x)
sin^2(x) + cos^2(x) = 1

The Attempt at a Solution


I do not know if I am solving this problem correctly. Is there an easier route than the way I have solved it, if it is solved correctly?

= (1+cot^2x) / (cot^2x)
= 1+ [ (cos^2x) / (sin^2x) ] ÷ [ (cos^2x) / (sin^2x) ]
= 1 + [ (cos^2x) / (sin^2x) ] x [ (sin^2x / cos^2x) ]
= [ (sin^2x / sin^2x) + (cos^2x / sin^2x) ] x [ (sin^2x) / (cos^2x) ]
= [ (sin^2x + cos^2x) / (sin^2x) ] x [ (sin^2x )/ (cos^2x) ]
= [ 1 / sin^2x ] x [ sin^2x / cos^2x]
= sin^2x / (sin^2x)(cos^2x)
= 1 / cos^2x
 
Physics news on Phys.org
Jen23 said:

Homework Statement


Express (1+cot^2 x) / (cot^2 x) in terms of sinx and/or cosx

Homework Equations


cot(x) = 1/tan(x)
sin^2(x) + cos^2(x) = 1

The Attempt at a Solution


I do not know if I am solving this problem correctly. Is there an easier route than the way I have solved it, if it is solved correctly?

= (1+cot^2x) / (cot^2x)
= 1+ [ (cos^2x) / (sin^2x) ] ÷ [ (cos^2x) / (sin^2x) ]
= 1 + [ (cos^2x) / (sin^2x) ] x [ (sin^2x / cos^2x) ]
= [ (sin^2x / sin^2x) + (cos^2x / sin^2x) ] x [ (sin^2x) / (cos^2x) ]
= [ (sin^2x + cos^2x) / (sin^2x) ] x [ (sin^2x )/ (cos^2x) ]
= [ 1 / sin^2x ] x [ sin^2x / cos^2x]
= sin^2x / (sin^2x)(cos^2x)
= 1 / cos^2x

Looks just fine to me.
 
Jen23 said:

Homework Statement


Express (1+cot^2 x) / (cot^2 x) in terms of sinx and/or cosx

Homework Equations


cot(x) = 1/tan(x)
sin^2(x) + cos^2(x) = 1

The Attempt at a Solution


I do not know if I am solving this problem correctly. Is there an easier route than the way I have solved it, if it is solved correctly?

= (1+cot^2x) / (cot^2x)
= 1+ [ (cos^2x) / (sin^2x) ] ÷ [ (cos^2x) / (sin^2x) ]
= 1 + [ (cos^2x) / (sin^2x) ] x [ (sin^2x / cos^2x) ]
= [ (sin^2x / sin^2x) + (cos^2x / sin^2x) ] x [ (sin^2x) / (cos^2x) ]
= [ (sin^2x + cos^2x) / (sin^2x) ] x [ (sin^2x )/ (cos^2x) ]
= [ 1 / sin^2x ] x [ sin^2x / cos^2x]
= sin^2x / (sin^2x)(cos^2x)
= 1 / cos^2x

Why don't you use the fact that
$$
\frac{1 +\cot^2 x}{\cot^2 x} = \frac{1}{\cot^2 x} + 1 ?
$$
Then you can finish off the whole thing in one more line of simple algebra (plus the identity ##\cos^2 x + \sin^2 x = 1##).
 
Ray Vickson said:
Why don't you use the fact that
$$
\frac{1 +\cot^2 x}{\cot^2 x} = \frac{1}{\cot^2 x} + 1 ?
$$
Then you can finish off the whole thing in one more line of simple algebra (plus the identity ##\cos^2 x + \sin^2 x = 1##).

so if 1 / cot^2x = tan^2x = sin^2x / cos^2x

Then all we have to do is: = (sin^2x/cos^2x ) + (cos^2x/cos^2x)
=( sin^2x + cos^2x)/ cos^2x
= 1 / cos^2x

Thanks so much haha, I didn't even notice that. Also another question for proofs. We know that sin^2x + cos^2x = 1 (pythagorean identity). Can we say the same for sinx + cosx= 1? I am pretty sure not but just double checking.
 
Jen23 said:
so if 1 / cot^2x = tan^2x = sin^2x / cos^2x

Then all we have to do is: = (sin^2x/cos^2x ) + (cos^2x/cos^2x)
=( sin^2x + cos^2x)/ cos^2x
= 1 / cos^2x

Thanks so much haha, I didn't even notice that. Also another question for proofs. We know that sin^2x + cos^2x = 1 (pythagorean identity). Can we say the same for sinx + cosx= 1? I am pretty sure not but just double checking.

Absolutely not. Try it if ##x=\pi##.
 
The brackets [ ] on your second line are incorrect
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K