How Do You Solve a Dimensional Analysis Problem for a Block in Viscous Fluid?

Click For Summary

Homework Help Overview

The discussion revolves around a dimensional analysis problem involving a block of mass being dragged through a viscous fluid. The problem includes determining the terminal velocity and characteristic time of the block's motion, as well as exploring the relationship between forces acting on the block and the energy generated during its motion.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the dimensional analysis of the forces involved, questioning the independence of the resistive force and its implications for terminal velocity. There are attempts to clarify the meaning of characteristic time and its role in the context of the problem. Some participants also explore the relationship between the initial conditions and the resulting motion of the block.

Discussion Status

The discussion is active, with participants providing insights into the dimensional analysis and the role of various parameters. Some have proposed equations for terminal velocity and characteristic time, while others are questioning assumptions and clarifying definitions. There is no explicit consensus yet, but productive dialogue is ongoing.

Contextual Notes

Participants are navigating the complexities of dimensional analysis and the definitions of terms such as terminal velocity and characteristic time. There are also discussions about the implications of initial conditions on the results, and the problem's constraints are being examined.

lichenguy
Messages
24
Reaction score
0

Homework Statement


A block of mass ##m = 1.00 kg## is being dragged through some viscous fluid by
an external force ##F = 10.0 N##. The resistive force can be written as ##R = -bv##,
where ##v## is the speed and ##b = 4.00 kg/s## is a phenomenological constant. You
may ignore gravity (we imagine that the block is floating inside the fluid). The
following integrals may come in handy:
$$\int \frac 1 { z } dz = ln(z), \int e^{-at} dt = \frac 1 a e^{-at}$$
a) Using the three physical quantities provided, use dimensional analysis to
find the terminal velocity of the motion ##v_T## and the characteristic time ##τ## .
b) Assuming that the block starts from rest, find ##v(t)##.
c) Find the distance traveled as a function of time ##x(t)##.

Some of the work done by the force F on the system becomes internal energy,
some becomes kinetic energy.
d) How much internal energy has been generated by the time the
block reaches half the terminal velocity, ##v(t) = v_T/2##? How big a fraction of
the total work is that?

The Attempt at a Solution


##m=M##
##F=\frac {ML} {T^2}##
##R=-\frac {LM} {T^2}##

##v_T = \frac L T = m^aF^bR^c##

##M=0=a+b+c##
##L=1=b+c##
##T=-1=-2b-2c##
This doesn't work. So I'm kinda stuck.
I also don't know what is meant by "characteristic time".
 

Attachments

  • problem 3.png
    problem 3.png
    4.2 KB · Views: 586
Last edited:
Physics news on Phys.org
You need to separate ##R## into ##b## which has some dimensions (what?) and ##v## which has dimensions ##LT^{-1}##. What kind of equation do you get then?
The exponential ##e^{-at}## can be rewritten as ##e^{-t/\tau}## where ##\tau = 1/a## is the time constant or characteristic time. It is the time required for the exponential to drop to ##1/e## of its initial value.

On edit: To elaborate a bit. Since the magnitude of ##R## is ##bv##, when terminal velocity is reached, ##R## reaches its terminal value ##R_T=bv_T##. You can't have dimensions of ##v_T## on both sides of the equation.

On second edit: Part (d) says "How much internal energy has been generated by the time the block reaches half the terminal velocity, ##v(t)=v_T=2##?" Shouldn't it be "How much internal energy has been generated by the time the block reaches half the terminal velocity, ##v(t)=v_T/2##?"
 
Last edited:
  • Like
Likes   Reactions: lichenguy
kuruman said:
You need to separate ##R## into ##b## which has some dimensions (what?) and ##v## which has dimensions ##LT^{-1}##. What kind of equation do you get then?
The exponential ##e^{-at}## can be rewritten as ##e^{-t/\tau}## where ##\tau = 1/a## is the time constant or characteristic time. It is the time required for the exponential to drop to ##1/e## of its initial value.

On edit: To elaborate a bit. Since the magnitude of ##R## is ##bv##, when terminal velocity is reached, ##R## reaches its terminal value ##R_T=bv_T##. You can't have dimensions of ##v_T## on both sides of the equation.

On second edit: Part (d) says "How much internal energy has been generated by the time the block reaches half the terminal velocity, ##v(t)=v_T=2##?" Shouldn't it be "How much internal energy has been generated by the time the block reaches half the terminal velocity, ##v(t)=v_T/2##?"
##b## has dimensions ##MT^{-1}## and together with ##v## i got the ##R=-\frac {LM} {T^2}## above. Yeah, i already did that. I guess i don't understand "You can't have dimensions of ##v_T## on both sides of the equation.".

I understand what the time constant does now. I found a cool video on the subject:
You're right, it's supposed to be ##v(t)=v_T/2##, i corrected it.
 
Last edited:
lichenguy said:
a) Using the three physical quantities provided, use dimensional analysis to
find the terminal velocity of the motion ##v_T## and the characteristic time ##τ## .
...
##R=-\frac {LM} {T^2}##
R is a variable within the process, i.e. a function of time. It cannot feature in the expression for terminal velocity. Find the more fundamental parameter. (Hint: to avoid confusion, you should also change your choice of unknowns for the powers.)
 
  • Like
Likes   Reactions: lichenguy
So, ##R## is not an independent variable and that is why we can't use it?
Using ##b## instead yields: ##v_T=F/b##
And solving for dimension ##T## gives: ##m/b##
But, what does this ##T## mean here? The time constant means dropping the initial value to ##1/e## percent or increasing the value to ##1-1/e## percent. Is that happening here?
 
lichenguy said:
R is not an independent variable and that is why we can't use it?
That's not quite it. The terminal velocity depends on certain parameters that describe the set-up. R is not one of those parameters. It is a function of time during the process, so its value changes with time. F, m and b are the constants that determine the behaviour.
lichenguy said:
what does this T mean here?
It tells you how the system behaves as you vary the parameters. If you increase m, keeping b constant, then the process slows down, i.e. it takes longer to reach a given fraction of its terminal velocity. If you were to plot the velocity as a fraction of terminal velocity against time, the time axis is stretched, but the graph otherwise stays the same. Conversely, increasing b for the same m speeds up the process. Changing F has no effect.
 
  • Like
Likes   Reactions: lichenguy
haruspex said:
That's not quite it. The terminal velocity depends on certain parameters that describe the set-up. R is not one of those parameters. It is a function of time during the process, so its value changes with time. F, m and b are the constants that determine the behaviour.

It tells you how the system behaves as you vary the parameters. If you increase m, keeping b constant, then the process slows down, i.e. it takes longer to reach a given fraction of its terminal velocity. If you were to plot the velocity as a fraction of terminal velocity against time, the time axis is stretched, but the graph otherwise stays the same. Conversely, increasing b for the same m speeds up the process. Changing F has no effect.
In this problem, if i compute ##τ=m/b## i get that ##τ=0.25## seconds. What fraction of ##v_T## does the block have when ##τ=0.25## seconds? Is that a bad question? Because it depends what ##v## is at the start, right?
 
lichenguy said:
In this problem, if i compute ##τ=m/b## i get that ##τ=0.25## seconds. What fraction of ##v_T## does the block have when ##τ=0.25## seconds? Is that a bad question? Because it depends what ##v## is at the start, right?
The assumption would be that initial speed is zero, i.e. choose start time such that speed is zero at time 0.
To find the fraction you would need to solve the differential equation.
 
Alright, finished, finally. Here are the results:
$$v(t) = v_T (1-e^{ - \frac t τ})$$ $$x(t) = v_T τ(\frac t τ + e^{ - \frac t τ} -1)$$ Where ##v_T = \frac F b## and ##τ = \frac m b##

On d:
I first found that velocity is ##v = \frac {v_T} 2## at time ##t=ln(2)τ##
Using ##W=ΔK+ΔE_{internal}##
##E_{internal} = Fτv_T(ln(2)- \frac 1 2 ) - \frac 1 8 mv_T^2##

Is there a different way of solving d?
 
  • #10
There is more to it than what you have. The viscous force is responsible for ##\Delta E_{internal}##, but that does not account for all the work. The external force ##F## also does work. You can calculate that too*, but I would find what is asked directly using ##\Delta E_{internal}= \int_0^{t_{1/2}}{P dt},## where ##P=R~ v(t)=b~v^2(t)## is the rate (power) at which the internal energy is generated.

*On edit: I see that you tried to calculate the work done by ##F##. Your method is valid. You can do the integral, if you wish, and check for consistency.
 
Last edited:
  • Like
Likes   Reactions: lichenguy

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
7
Views
2K