MHB How Do You Solve for Alpha and Beta in Exponential Equations?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Alpha Beta
Click For Summary
The discussion focuses on solving for the coefficients alpha (α) and beta (β) in a system of exponential equations. The participants explore the transition from the given equations to the derived formulas for α and β. A method involving elimination is suggested, where the second equation is manipulated to facilitate the calculation of α. Despite attempts to use computational tools like Mathematica, some users report errors in their solutions. The conversation emphasizes the importance of correctly applying algebraic manipulation to derive the coefficients accurately.
Dustinsfl
Messages
2,217
Reaction score
5
\begin{align}
\alpha_nb^n +\beta_nb^{-n}=A_n\\
\alpha_na^n +\beta_na^{-n}=C_n
\end{align}

How does one go from that to
$$
\alpha_n = \frac{A_n/a_n - C_n/b^n}{(b/a)^n-(a/b)^n}
$$
and
$$
\beta_n = \frac{a^nC_n - b^nA_n}{(b/a)^n-(a/b)^n}
$$
 
Mathematics news on Phys.org
dwsmith said:
\begin{align}
\alpha_nb^n +\beta_nb^{-n}=A_n\\
\alpha_na^n +\beta_na^{-n}=C_n
\end{align}

How does one go from that to
$$
\alpha_n = \frac{A_n/a_n - C_n/b^n}{(b/a)^n-(a/b)^n}
$$
and
$$
\beta_n = \frac{a^nC_n - b^nA_n}{(b/a)^n-(a/b)^n}
$$

That's a [linear...] system of two equation in the unknown variables $\alpha_{n}$ and $\beta_{n}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
That's a [linear...] system of two equation in the unknown variables $\alpha_{n}$ and $\beta_{n}$...

Kind regards

$\chi$ $\sigma$

I do know that, but every time I solve it, I don't get the correct answer. I even put it into full version Mathematica and Wolfram online and it just returns an error.

For $\beta$, I keep getting
$$
\beta_n = \frac{b^nC_n - a^nA_n}{\text{the correct denominator}}
$$
 
I would use elimination, for example, multiplying the second equation by:

$\displaystyle -\left(\frac{a}{b} \right)^n$

gives us:

$\displaystyle -\alpha_na^{2n}b^{-n}-\beta_nb^{-n}=-C_na^nb^{-n}$

Adding this to the first equation, we find:

$\displaystyle \alpha_n(b^n-a^{2n}b^{-n})=A_n-C_na^nb^{-n}$

$\displaystyle \alpha_n=\frac{A_n-C_na^nb^{-n}}{b^n-a^{2n}b^{-n}}=\frac{\frac{A_n}{a^n}-\frac{C_n}{b^{n}}}{\left(\frac{b}{a} \right)^n-\left(\frac{a}{b} \right)^n}$

The solution for $\displaystyle \beta_n$ can now be found by substitution.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K