MHB How Do You Solve This Complex Quadratic Equation?

Click For Summary
To solve the complex quadratic equation $\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$, the discussion suggests simplifying it to $x^4-6x^3+12x^2+12x+4=0$. By substituting $y = \frac{x^2+2}{x}$, the equation transforms into $y + \frac{8}{y} = 6$, which can be solved as a quadratic in y. This approach allows for finding y first, and subsequently determining the values of x. The overall consensus is that the problem can be tackled without exceeding quadratic complexity.
paulmdrdo1
Messages
382
Reaction score
0
please help me with this

$\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$

this is where I can get to when I simplify the the equation above,

$x^4-6x^3+12x^2+12x+4=0$
 
Mathematics news on Phys.org
paulmdrdo said:
please help me with this

$\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$

this is where I can get to when I simplify the the equation above,

$x^4-6x^3+12x^2+12x+4=0$

the above has become more complex
in case you put
$\frac{x^2+2}{x}= y$

then you get
$ y +\frac{8}{y} = 6$

you get quadratic in y then solve for y and based on it solve for x

I hope you can proceed because at no stage you get more than quadratic
 
paulmdrdo said:
please help me with this

$\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$

this is where I can get to when I simplify the the equation above,

$x^4-6x^3+12x^2+12x+4=0$

Let $ y = \frac{x^2+2}{x} $
Solve it for y
$y + \frac{8}{y} = 6 $
Then solve it for x
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K