MHB How Do You Solve This Complex Quadratic Equation?

AI Thread Summary
To solve the complex quadratic equation $\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$, the discussion suggests simplifying it to $x^4-6x^3+12x^2+12x+4=0$. By substituting $y = \frac{x^2+2}{x}$, the equation transforms into $y + \frac{8}{y} = 6$, which can be solved as a quadratic in y. This approach allows for finding y first, and subsequently determining the values of x. The overall consensus is that the problem can be tackled without exceeding quadratic complexity.
paulmdrdo1
Messages
382
Reaction score
0
please help me with this

$\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$

this is where I can get to when I simplify the the equation above,

$x^4-6x^3+12x^2+12x+4=0$
 
Mathematics news on Phys.org
paulmdrdo said:
please help me with this

$\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$

this is where I can get to when I simplify the the equation above,

$x^4-6x^3+12x^2+12x+4=0$

the above has become more complex
in case you put
$\frac{x^2+2}{x}= y$

then you get
$ y +\frac{8}{y} = 6$

you get quadratic in y then solve for y and based on it solve for x

I hope you can proceed because at no stage you get more than quadratic
 
paulmdrdo said:
please help me with this

$\frac{x^2+2}{x}+\frac{8x}{x^2+2}=6$

this is where I can get to when I simplify the the equation above,

$x^4-6x^3+12x^2+12x+4=0$

Let $ y = \frac{x^2+2}{x} $
Solve it for y
$y + \frac{8}{y} = 6 $
Then solve it for x
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top