I How Does Gravity Affect Spectral Line Strength?

AI Thread Summary
The relationship between spectral line strength and gravity is complex, as it involves multiple factors such as oscillator strength, elemental abundance, temperature, and pressure. The equivalent width of spectral lines, like Ca II, can decrease with increasing gravity, but this is not a straightforward correlation. Changes in gravity affect atmospheric pressure, which in turn influences the structure and spectral class of a star. Additionally, electron and gas pressure contribute to line shape through pressure broadening, but the line width is not directly proportional to pressure due to the complexities of radiative transfer. Understanding these interactions requires solving intricate radiation transport problems within model atmospheres.
Angela G
Messages
65
Reaction score
19
TL;DR Summary
Hello,
I wonder if someone please could explain what the relationship between a spectral line strength and gravity is? Does the equivalent width of e.g. Ca II decrease with increasing gravity? what kind of processes affects the strength of a line if we change the gravity of a star?
Hope you can help me
 
Astronomy news on Phys.org
Angela G said:
what kind of processes affects the strength of a line if we change the gravity of a star?
There is no simple relationship. The equivalent width of a spectral line depends on the oscillator strength (an atomic parameter), the elemental abundance, temperature (ionization states) and pressure, and can only be obtained by solving a complicated radiation transport problem in a model atmosphere. The pressure depends, of course, on the star's gravity and determines the structure of its atmosphere and the spectral class. Electron and gas pressure have an influence on the line shape (causing "pressure broadening"), but the resulting line width is not simply proportional to the pressure because of the intricacies of radiative transfer. Spectral lines are formed in layers with temperature and pressure gradients.

Hope this helps. :-)
 
  • Informative
  • Like
Likes Angela G, berkeman and FactChecker
Thank you very much!
 
Today at about 4:30 am I saw the conjunction of Venus and Jupiter, where they were about the width of the full moon, or one half degree apart. Did anyone else see it? Edit: The moon is 2,200 miles in diameter and at a distance of 240,000 miles. Thereby it subtends an angle in radians of 2,200/240,000=.01 (approximately). With pi radians being 180 degrees, one radian is 57.3 degrees, so that .01 radians is about .50 degrees (angle subtended by the moon). (.57 to be more exact, but with...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top