I'm think that the distance in the ship's coordinate system should be just sqrt(1-v^2/c^2) times the distance in the Earth's coordinate system.
Basically, the angle betweent the line of simultaneity and the horizontal 'x' axis is just the rapidity, theta, therefore the length in the Earth frame divided by the length in the instantaneous ship frame is just cosh(theta).
Another way of putting this: letting c=1
The slope of the "line of simultaneity" is 1/v , thus delta-t = v*delta-x
If the Earth is at the origin of the coordinate system and the spaceship is at (t,d) in the Earth coordinate system
The point on the Earth's trajectory (t=*, x=0) simultaneous with (t,x) in the ship frame is just
(t-v*d,0)
The lorentz interval betweent these points is d^2 - (v*d)^2
The distance is the square root of the Lorentz interval, i.e d*sqrt(1-v^2)
The following diagram might have helped, if it came out :-(. (I was trying gnuplot this time around). I'll keep it, in case I can get it to work.
<br />
\]<br />
\begin{picture}(1500,900)(0,0)<br />
\setlength{\unitlength}{0.240900pt}<br />
\sbox{\plotpoint}{\rule[-0.200pt]{0.400pt}{0.400pt}}%<br />
\put(100.0,82.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(80,82){\makebox(0,0)[r]{ 0}}<br />
\put(1419.0,82.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(100.0,238.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(80,238){\makebox(0,0)[r]{ 1}}<br />
\put(1419.0,238.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(100.0,393.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(80,393){\makebox(0,0)[r]{ 2}}<br />
\put(1419.0,393.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(100.0,549.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(80,549){\makebox(0,0)[r]{ 3}}<br />
\put(1419.0,549.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(100.0,704.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(80,704){\makebox(0,0)[r]{ 4}}<br />
\put(1419.0,704.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(100.0,860.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(80,860){\makebox(0,0)[r]{ 5}}<br />
\put(1419.0,860.0){\rule[-0.200pt]{4.818pt}{0.400pt}}<br />
\put(100.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(100,41){\makebox(0,0){ 0}}<br />
\put(100.0,840.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(368.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(368,41){\makebox(0,0){ 1}}<br />
\put(368.0,840.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(636.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(636,41){\makebox(0,0){ 2}}<br />
\put(636.0,840.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(903.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(903,41){\makebox(0,0){ 3}}<br />
\put(903.0,840.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(1171.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(1171,41){\makebox(0,0){ 4}}<br />
\put(1171.0,840.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(1439,41){\makebox(0,0){ 5}}<br />
\put(1439.0,840.0){\rule[-0.200pt]{0.400pt}{4.818pt}}<br />
\put(100.0,82.0){\rule[-0.200pt]{322.565pt}{0.400pt}}<br />
\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{187.420pt}}<br />
\put(100.0,860.0){\rule[-0.200pt]{322.565pt}{0.400pt}}<br />
\put(100.0,82.0){\rule[-0.200pt]{0.400pt}{187.420pt}}<br />
\put(1279,820){\makebox(0,0)[r]{sqrt(x*x-1)}}<br />
\put(1299.0,820.0){\rule[-0.200pt]{24.090pt}{0.400pt}}<br />
\put(379,127){\usebox{\plotpoint}}<br />
\multiput(379.58,127.00)(0.499,0.643){109}{\rule{0.120pt}{0.614pt}}<br />
\multiput(378.17,127.00)(56.000,70.725){2}{\rule{0.400pt}{0.307pt}}<br />
\multiput(435.00,199.58)(0.583,0.498){93}{\rule{0.567pt}{0.120pt}}<br />
\multiput(435.00,198.17)(54.824,48.000){2}{\rule{0.283pt}{0.400pt}}<br />
\multiput(491.00,247.58)(0.655,0.498){81}{\rule{0.624pt}{0.120pt}}<br />
\multiput(491.00,246.17)(53.705,42.000){2}{\rule{0.312pt}{0.400pt}}<br />
\multiput(546.00,289.58)(0.701,0.498){77}{\rule{0.660pt}{0.120pt}}<br />
\multiput(546.00,288.17)(54.630,40.000){2}{\rule{0.330pt}{0.400pt}}<br />
\multiput(602.00,329.58)(0.758,0.498){71}{\rule{0.705pt}{0.120pt}}<br />
\multiput(602.00,328.17)(54.536,37.000){2}{\rule{0.353pt}{0.400pt}}<br />
\multiput(658.00,366.58)(0.758,0.498){71}{\rule{0.705pt}{0.120pt}}<br />
\multiput(658.00,365.17)(54.536,37.000){2}{\rule{0.353pt}{0.400pt}}<br />
\multiput(714.00,403.58)(0.779,0.498){69}{\rule{0.722pt}{0.120pt}}<br />
\multiput(714.00,402.17)(54.501,36.000){2}{\rule{0.361pt}{0.400pt}}<br />
\multiput(770.00,439.58)(0.788,0.498){67}{\rule{0.729pt}{0.120pt}}<br />
\multiput(770.00,438.17)(53.488,35.000){2}{\rule{0.364pt}{0.400pt}}<br />
\multiput(825.00,474.58)(0.826,0.498){65}{\rule{0.759pt}{0.120pt}}<br />
\multiput(825.00,473.17)(54.425,34.000){2}{\rule{0.379pt}{0.400pt}}<br />
\multiput(881.00,508.58)(0.802,0.498){67}{\rule{0.740pt}{0.120pt}}<br />
\multiput(881.00,507.17)(54.464,35.000){2}{\rule{0.370pt}{0.400pt}}<br />
\multiput(937.00,543.58)(0.826,0.498){65}{\rule{0.759pt}{0.120pt}}<br />
\multiput(937.00,542.17)(54.425,34.000){2}{\rule{0.379pt}{0.400pt}}<br />
\multiput(993.00,577.58)(0.811,0.498){65}{\rule{0.747pt}{0.120pt}}<br />
\multiput(993.00,576.17)(53.449,34.000){2}{\rule{0.374pt}{0.400pt}}<br />
\multiput(1048.00,611.58)(0.851,0.497){63}{\rule{0.779pt}{0.120pt}}<br />
\multiput(1048.00,610.17)(54.384,33.000){2}{\rule{0.389pt}{0.400pt}}<br />
\multiput(1104.00,644.58)(0.826,0.498){65}{\rule{0.759pt}{0.120pt}}<br />
\multiput(1104.00,643.17)(54.425,34.000){2}{\rule{0.379pt}{0.400pt}}<br />
\multiput(1160.00,678.58)(0.851,0.497){63}{\rule{0.779pt}{0.120pt}}<br />
\multiput(1160.00,677.17)(54.384,33.000){2}{\rule{0.389pt}{0.400pt}}<br />
\multiput(1216.00,711.58)(0.826,0.498){65}{\rule{0.759pt}{0.120pt}}<br />
\multiput(1216.00,710.17)(54.425,34.000){2}{\rule{0.379pt}{0.400pt}}<br />
\multiput(1272.00,745.58)(0.836,0.497){63}{\rule{0.767pt}{0.120pt}}<br />
\multiput(1272.00,744.17)(53.409,33.000){2}{\rule{0.383pt}{0.400pt}}<br />
\multiput(1327.00,778.58)(0.851,0.497){63}{\rule{0.779pt}{0.120pt}}<br />
\multiput(1327.00,777.17)(54.384,33.000){2}{\rule{0.389pt}{0.400pt}}<br />
\multiput(1383.00,811.58)(0.851,0.497){63}{\rule{0.779pt}{0.120pt}}<br />
\multiput(1383.00,810.17)(54.384,33.000){2}{\rule{0.389pt}{0.400pt}}<br />
\put(1279,779){\makebox(0,0)[r]{.866*x}}<br />
\multiput(1299,779)(20.756,0.000){5}{\usebox{\plotpoint}}<br />
\put(1399,779){\usebox{\plotpoint}}<br />
\put(100,82){\usebox{\plotpoint}}<br />
\multiput(100,82)(18.564,9.282){4}{\usebox{\plotpoint}}<br />
\multiput(156,110)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(212,138)(18.497,9.416){3}{\usebox{\plotpoint}}<br />
\multiput(267,166)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(323,194)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(379,222)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(435,250)(18.431,9.545){3}{\usebox{\plotpoint}}<br />
\multiput(491,279)(18.497,9.416){3}{\usebox{\plotpoint}}<br />
\multiput(546,307)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(602,335)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(658,363)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(714,391)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(770,419)(18.497,9.416){3}{\usebox{\plotpoint}}<br />
\multiput(825,447)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(881,475)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(937,503)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(993,531)(18.497,9.416){3}{\usebox{\plotpoint}}<br />
\multiput(1048,559)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(1104,587)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(1160,615)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(1216,643)(18.431,9.545){3}{\usebox{\plotpoint}}<br />
\multiput(1272,672)(18.497,9.416){3}{\usebox{\plotpoint}}<br />
\multiput(1327,700)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\multiput(1383,728)(18.564,9.282){3}{\usebox{\plotpoint}}<br />
\put(1439,756){\usebox{\plotpoint}}<br />
\sbox{\plotpoint}{\rule[-0.400pt]{0.800pt}{0.800pt}}%<br />
\sbox{\plotpoint}{\rule[-0.200pt]{0.400pt}{0.400pt}}%<br />
\put(1279,738){\makebox(0,0)[r]{.866}}<br />
\sbox{\plotpoint}{\rule[-0.400pt]{0.800pt}{0.800pt}}%<br />
\put(1299.0,738.0){\rule[-0.400pt]{24.090pt}{0.800pt}}<br />
\put(100,217){\usebox{\plotpoint}}<br />
\put(100.0,217.0){\rule[-0.400pt]{322.565pt}{0.800pt}}<br />
\sbox{\plotpoint}{\rule[-0.200pt]{0.400pt}{0.400pt}}%<br />
\put(100.0,82.0){\rule[-0.200pt]{322.565pt}{0.400pt}}<br />
\put(1439.0,82.0){\rule[-0.200pt]{0.400pt}{187.420pt}}<br />
\put(100.0,860.0){\rule[-0.200pt]{322.565pt}{0.400pt}}<br />
\put(100.0,82.0){\rule[-0.200pt]{0.400pt}{187.420pt}}<br />
\end{picture}<br />
\[<br />
[\tex]