- 3,738
- 1,905
This is a lot more complicated than it seems. If you arranged things so that in the sausage frame, the spacing between segments remained constant and all the segments started and stopped accelerating at the same moment, then according to the pastry ship, the segments and thus the distance between them was shrinking due to length contraction during this whole acceleration. But this also means that, at any given moment the Leading segment was traveling at a lower speed relative to the rear segment and thus its clock was exhibiting a greater time dilation rate. In other words, according to the pastry ship, the clocks in the segments wouldn't be ticking at the same rate.name123 said:So what about the situation where the "sausage" spaceship is at rest with the "pastry" spaceship, and they all synchronous their clocks and reset to 0, and then the "sausage" spaceship then accelerates to 0.6v for one second, and then accelerates back to the rest frame of the pastry spaceship.
You can imagine the "sausage" spaceship to be segmented, and for each segment to have its own rockets, and for them to start the moment the clocks reset to 0. Presumably the observers on the "pastry" spaceship will all agree the segments all set off at the same time. Would the observers on the "pastry" spaceship all agree the segments reached 0.6v at the same time? If so would they all agree what the clocks of those segments read when they reached it? Also after the "sausage" spaceship which we can assume is 10 light years long has been going (according to it's frame of reference) for one second what roughly would the observers on the front and end of it think the last "pastry" spaceship clock each had passed was showing on its clock (imagine the "pastry" spaceship to be considerably longer than the "sausage" one)?
In addition, due to the fact that the rest frame of the sausage ship is a non-inertial one, anyone on the sausage ship would say that clocks at the trailing segment would be running slower than those in the leading segment. Thus, for each segment to stop its acceleration " at the same time" across the ship, each segment would have to stop its acceleration at a different time according to its own clock. So first you would have to work out the end difference between clocks of the sausage ship as measured in the sausage ship, and then apply the relativity of simultaneity to make comparisons between clocks of the relatively moving frames.
Working with extended bodies under acceleration is not a simple problem in Relativity.