How Does Superposition Affect Measurements in a 1-D Harmonic Oscillator?

AI Thread Summary
In a one-dimensional harmonic oscillator, the normalized ground state and first excited state are represented by wave functions ##\psi_0(x)## and ##\psi_1(x)##. A linear combination of these states is constructed as ##\psi(x)=b_0\psi_0(x)+b_1\psi_1(x)##, with the normalization condition leading to the relationship ##b_1=\sqrt{1-b_0^2}##. To maximize the expectation value ##<\psi|\hat{x}|\psi>##, it is determined that the optimal coefficients are ##b_0=b_1=\frac{1}{\sqrt{2}}##. This results in a balanced superposition that enhances measurement outcomes in the harmonic oscillator system.
docnet
Messages
796
Reaction score
488
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-27 at 4.55.26 PM.png
Consider a one-dimensional harmonic oscillator. ##\psi_0(x)## and ##\psi_1(x)## are the normalized ground state and the first excited states.
\begin{equation}
\psi_0(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}
\end{equation}
\begin{equation}
\psi_1(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}
\end{equation}
(a) Construct a state for the particle that is a linear combination
$$\psi(x)=b_0\psi_0(x)+b_1\psi_1(x)$$
$$\psi(x)=b_0\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}+b_1\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}$$
Find ##b_1## in terms of ##b_0##.
$$\int_0^a<b_0\psi_0+b_1\psi_1|b_0\psi_0+b_1\psi_1>dx=1$$
$$b_0^2+b_1^2=1$$
$$b_1=\sqrt{1-b_0^2}$$
(b) Which particular linear combination will maximize ##<\psi|\hat{x}|\psi>##?
$$<\psi|\hat{x}|\psi>=\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}+\hat{a}^{\dagger})\Big|b_0\psi_0(x)+b_1\psi_1(x)\Big>$$
$$=\sqrt{\frac{\hbar}{2m\omega}}\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|b_1\psi_{0}(x)+b_0\psi_1(x)+b_1\sqrt{2}\psi_2(x)\Big>$$
$$=b_0b_1\sqrt{\frac{\hbar}{2m\omega}}\int^a_0\Big(\psi_0(x)^2+\psi_1(x)^2\Big)dx$$
maximize ##b_0=b_1## ##\rightarrow## ##<\psi|\hat{x}|\psi>##.
$$\frac{d}{db_0}b_0\sqrt{1-b_0^2}=\sqrt{1-b_0^2}-\frac{b_0^2}{\sqrt{1-b_0^2}}=0\Rightarrow b_0,b_1=\sqrt{\frac{1}{2}}$$
$$max(b_0,b_1)\Rightarrow (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$$
 

Attachments

  • Screen Shot 2021-02-27 at 4.52.11 PM.png
    Screen Shot 2021-02-27 at 4.52.11 PM.png
    44.2 KB · Views: 163
Physics news on Phys.org
Looks good to me.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top