How Does Superposition Affect Measurements in a 1-D Harmonic Oscillator?

Click For Summary
SUMMARY

The discussion focuses on the effects of superposition in a one-dimensional harmonic oscillator, specifically analyzing the normalized ground state ##\psi_0(x)## and the first excited state ##\psi_1(x)##. The linear combination of these states is represented as ##\psi(x)=b_0\psi_0(x)+b_1\psi_1(x)##, with the relationship ##b_1=\sqrt{1-b_0^2}## established. To maximize the expectation value ##<\psi|\hat{x}|\psi>##, it is determined that the optimal coefficients are ##b_0=b_1=\frac{1}{\sqrt{2}}##, leading to a balanced superposition that enhances measurement outcomes.

PREREQUISITES
  • Understanding of quantum mechanics principles, particularly wave functions and superposition.
  • Familiarity with the mathematical representation of quantum states and operators.
  • Knowledge of harmonic oscillators and their significance in quantum systems.
  • Ability to perform integrals and manipulate equations involving quantum states.
NEXT STEPS
  • Explore the implications of superposition in multi-dimensional quantum systems.
  • Study the mathematical derivation of expectation values in quantum mechanics.
  • Investigate the role of the harmonic oscillator in quantum field theory.
  • Learn about the significance of normalization in quantum state functions.
USEFUL FOR

Students and professionals in physics, particularly those specializing in quantum mechanics, as well as researchers interested in the foundational concepts of superposition and measurement in quantum systems.

docnet
Messages
796
Reaction score
486
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-27 at 4.55.26 PM.png
Consider a one-dimensional harmonic oscillator. ##\psi_0(x)## and ##\psi_1(x)## are the normalized ground state and the first excited states.
\begin{equation}
\psi_0(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}
\end{equation}
\begin{equation}
\psi_1(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}
\end{equation}
(a) Construct a state for the particle that is a linear combination
$$\psi(x)=b_0\psi_0(x)+b_1\psi_1(x)$$
$$\psi(x)=b_0\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}+b_1\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}$$
Find ##b_1## in terms of ##b_0##.
$$\int_0^a<b_0\psi_0+b_1\psi_1|b_0\psi_0+b_1\psi_1>dx=1$$
$$b_0^2+b_1^2=1$$
$$b_1=\sqrt{1-b_0^2}$$
(b) Which particular linear combination will maximize ##<\psi|\hat{x}|\psi>##?
$$<\psi|\hat{x}|\psi>=\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}+\hat{a}^{\dagger})\Big|b_0\psi_0(x)+b_1\psi_1(x)\Big>$$
$$=\sqrt{\frac{\hbar}{2m\omega}}\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|b_1\psi_{0}(x)+b_0\psi_1(x)+b_1\sqrt{2}\psi_2(x)\Big>$$
$$=b_0b_1\sqrt{\frac{\hbar}{2m\omega}}\int^a_0\Big(\psi_0(x)^2+\psi_1(x)^2\Big)dx$$
maximize ##b_0=b_1## ##\rightarrow## ##<\psi|\hat{x}|\psi>##.
$$\frac{d}{db_0}b_0\sqrt{1-b_0^2}=\sqrt{1-b_0^2}-\frac{b_0^2}{\sqrt{1-b_0^2}}=0\Rightarrow b_0,b_1=\sqrt{\frac{1}{2}}$$
$$max(b_0,b_1)\Rightarrow (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$$
 

Attachments

  • Screen Shot 2021-02-27 at 4.52.11 PM.png
    Screen Shot 2021-02-27 at 4.52.11 PM.png
    44.2 KB · Views: 184
Physics news on Phys.org
Looks good to me.
 
  • Like
Likes   Reactions: docnet

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
8
Views
2K