How Does Superposition Affect Measurements in a 1-D Harmonic Oscillator?

docnet
Messages
796
Reaction score
488
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-27 at 4.55.26 PM.png
Consider a one-dimensional harmonic oscillator. ##\psi_0(x)## and ##\psi_1(x)## are the normalized ground state and the first excited states.
\begin{equation}
\psi_0(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}
\end{equation}
\begin{equation}
\psi_1(x)=\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}
\end{equation}
(a) Construct a state for the particle that is a linear combination
$$\psi(x)=b_0\psi_0(x)+b_1\psi_1(x)$$
$$\psi(x)=b_0\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}e^{\frac{-m\omega}{2\hbar}x^2}+b_1\Big(\frac{m\omega}{\pi\hbar}\Big)^{\frac{1}{4}}\sqrt{\frac{2m\omega}{\hbar}}xe^{\frac{-m\omega}{2\hbar}x^2}$$
Find ##b_1## in terms of ##b_0##.
$$\int_0^a<b_0\psi_0+b_1\psi_1|b_0\psi_0+b_1\psi_1>dx=1$$
$$b_0^2+b_1^2=1$$
$$b_1=\sqrt{1-b_0^2}$$
(b) Which particular linear combination will maximize ##<\psi|\hat{x}|\psi>##?
$$<\psi|\hat{x}|\psi>=\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}+\hat{a}^{\dagger})\Big|b_0\psi_0(x)+b_1\psi_1(x)\Big>$$
$$=\sqrt{\frac{\hbar}{2m\omega}}\Big<b_0\psi_0(x)+b_1\psi_1(x)\Big|b_1\psi_{0}(x)+b_0\psi_1(x)+b_1\sqrt{2}\psi_2(x)\Big>$$
$$=b_0b_1\sqrt{\frac{\hbar}{2m\omega}}\int^a_0\Big(\psi_0(x)^2+\psi_1(x)^2\Big)dx$$
maximize ##b_0=b_1## ##\rightarrow## ##<\psi|\hat{x}|\psi>##.
$$\frac{d}{db_0}b_0\sqrt{1-b_0^2}=\sqrt{1-b_0^2}-\frac{b_0^2}{\sqrt{1-b_0^2}}=0\Rightarrow b_0,b_1=\sqrt{\frac{1}{2}}$$
$$max(b_0,b_1)\Rightarrow (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$$
 

Attachments

  • Screen Shot 2021-02-27 at 4.52.11 PM.png
    Screen Shot 2021-02-27 at 4.52.11 PM.png
    44.2 KB · Views: 152
Physics news on Phys.org
Looks good to me.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top