I How Does the Book's Formula for Angular Momentum Differ from Mine?

AI Thread Summary
The discussion centers on the differences in calculating angular momentum for a disc between a user's method and a book's formula. The user calculates angular momentum using the equation L = I_x ω_x + I_y ω_y + I_z ω_z, while the book includes an additional term, L_s sin θ_y, suggesting a different approach. Questions arise regarding the initial conditions of the disc's rotation and the definitions of the angular velocity components and moments of inertia. Clarifications are sought on the user's calculations and the context of the disc's motion. Understanding these distinctions is crucial for accurate angular momentum analysis.
Kashmir
Messages
466
Reaction score
74
A disc initially has angular velocities as shown
IMG_20210707_220620.JPG

It's angular momentum along the y-axis initially is ##L_s##
I tried to find its angular momentum and ended up with this:##L=I_{x} \omega_{x}+I_{y} w_{y}+I_{z} z_{z}##The z component of angular momentum is thus ##L_{z}=I_{z} \omega_{z}##

However I found a similar situation in a book
IMG_20210707_223058.JPG
IMG_20210707_221438.JPG


that writes the components of angular momentum along x as ##L_{x}=I_{x x} \frac{d \theta_{x}}{d t}+L_{s} \sin \theta_{y}##

The book has an additional term ##L_{s} \sin \theta_{y}## for the angular momentum which I don't.

Why am I wrong ?
 
Last edited:
Physics news on Phys.org
Your question is not completely clear. Perhaps the disc is initially spinning with an ## L_s ## and then given an additional rotation. Otherwise a magnetization of the disc could also make for an ## L_s ##, but in general ## L_s ## from any magnetization would be very small.
 
Are you asking for an expression for the angular momentum of a disk where the rotation axis is not perpendicular to the disk? Your drawing is not clear.

Are ##\omega_x, \omega_y## and ##\omega_z## the cartesian coordinates of ##\vec\omega##? How are ##I_x##, ##I_y## and ##I_z## defined? Can you describe your calculations?
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top