stevmg said:
To JesseM
Regarding Post 36 of “What happens biologically during time dilation?”
It seems like you use the reduction factor of 0.8 twice…It works out but I don’t get it.
- Stella is presumed at rest so Terence is moving to the left at 0.6c. Correct?
- Stella starts her leftward movement when Terence is ?light-years away from Stella.? I understand from the first example (Terence at rest, Stella moving at 0.6c to the right) that the time elapsed in Terence’s frame is 10 years (outbound) and 10 years inbound, thus Stella has moved out to 10*0.6 = 6 light-years. This calculation is obvious.
The rest, below, becomes a bit more oblivious
- In the second example in which Stella is at rest and Terence moves to the left at 0.6c you are given nothing. All you know is that Terence moves left at 0.6c but you do not know for what distance or for how long. It looks like you are using the 6 light-years from the first example (Terence stationary) to calculate this distance. Can you do that?
Sure, remember that both frames have to agree about local physical events, like what object Stella was next to when she accelerated. And I specified that we could imagine that Terence had a measuring-rod moving along with him, with one end next to Terence's position and the other end 6 light years away in Terence's frame; if it's true in Terence's frame that Stella accelerates when she reaches the end of this measuring rod, it must be true in the other frame as well. Just read this part again:
In Terence's frame, remember that Stella accelerated when she was 6 light-years away from Earth, so we can imagine she turns around when she reaches the far end of a measuring-rod at rest in Terence's frame and 6 light-years long in that frame, with Terence sitting on the near end; in the frame we're dealing with now, the measuring-rod will therefore be moving along with Terence at 0.6c, so it'll be shrunk via length contraction to a length of only 0.8*6 = 4.8 light-years.
stevmg said:
From there you “contract” the distance from Stella to Terence (which you calculated in the first example where Terence remained stationary) to be 4.8 light years by using the (1/gamma) = 0.8 as a length contraction factor [6 light-years*0.8 = 4.8 light-years.]
I don't directly contract the distance from Stella to Terence--I contract the actual length of the physical measuring-rod, and then point out that since Terence is at one end and Stella is at the other when she accelerates, then this contracted length must also be the distance between Terence and Stella in this frame at the moment Stella accelerates.
stevmg said:
Then you back calculate the elapsed time as 8 years by dividing the 4.8 light-years by 0.6c = 8 years. In whose frame is the 8 years – Stella or Terence?
This is the frame where Stella was at rest during the outbound leg. In this frame Terence was moving away at 0.6c, and we know by the above argument involving the measuring-rod that he had reached a distance of 4.8 light years from Stella when Stella accelerated, so it must have taken him 8 years to get out this distance in this frame.
stevmg said:
What justification do you have for assuming the 6 light-years from the first example (Terence stationary) is correct for this alternate look at the same problem (Stella initially stationary?)
It isn't correct! 4.8 light-years is the correct distance between Stella and Terence when Stella accelerates in this frame, not 6 light years as in Terence's frame. Again, this is just because Stella accelerates when her position coincides with the end of the measuring-rod (a local event that all frames must agree on), and if the measuring rod has a length of 6 light years in Terence's frame where the rod is at rest, then according to the length contraction equation it must have a shorter length of 4.8 light years in this frame.
stevmg said:
Also, the 6.0*0.8 = 4.8 light-years is true for whose frame? Is it Stella’s (sitting still) or is it Terence’s (who is in motion?)
Stella's frame (or more specifically the inertial frame where Stella was at rest during the outbound phase). The measuring-rod is at rest and 6 light years long in Terence's frame, it is moving at 0.6c in Stella's frame and therefore is length-contracted to 4.8 light years.
stevmg said:
Moving right along: Now, you then “re-contract” [or "time-dilate"] the 8 years you just calculated above (6.0*0.8)/0.6]*(0.8) = 6.4 years. Where did that come from? Whose frame is that happening in – again, Stella (she’s stationary) or Terence (moving right along?) Haven’t they both been “time-dilated” by now?
Everything in the second paragraph of my explanation, the one that begins "Now let's analyze the same situation in a different inertial frame--namely, the frame where Stella was at rest during the outbound leg of her trip", was meant to be from the perspective of Stella's frame. In this frame's coordinates, Terence was moving away from Stella at 0.6c until he reached a distance of 4.8 light years (when the other end of the rod moving along with him was next to Stella), so in this frame this must have taken a coordinate time of 4.8/0.6 = 8 years. Stella is at rest in this frame, so her clock keeps pace with coordinate time, meaning 8 years have passed on her clock between the moment Terence departed and the moment she is lined up with the end of the measuring-rod moving along with Terence (the same moment she accelerates)--she experiences
no time dilation up until then in this frame. On the other hand, since Terence is moving at 0.6c, his clock is dilated by a factor of 0.8 relative to coordinate time, therefore if a coordinate time of 8 years passes between Terence leaving Stella and Stella accelerating, Terence's clock must only elapse 6.4 years between the times of these two events in this frame, just based on the time dilation equation.
stevmg said:
- Now, you claim that at this point, after the 8 years or 6.4 years or whatever Stella blasts off to the left at 0.88235c which you calculated by the relativistic velocity addition formula. Now, who is that relative to - Stella’s original F.O.R. or Terence’s?
Again it's all in Stella's original frame. We already knew Stella's speed in Terence's frame, it was 0.6c in both directions. As explained
here, the velocity addition formula tells you that if some object A is moving at speed v in some direction the frame of B, and B is moving at speed u in the same direction in the frame of C, then the speed of object A in the frame of C will be (u + v)/(1 + uv/c^2). In this case we know Stella (object A) was moving at speed 0.6c to the left in the frame of Terence during her inbound trip, and Terence (object B) was moving at 0.6c to the left in the frame of an inertial observer (object C) who saw Stella at rest during her
outbound trip, which means in the frame of this observer, during her
inbound trip Stella must have had a speed of (0.6c + 0.6c)/(1 + 0.6*0.6) = 1.2c/1.36 = 0.88235c.
stevmg said:
I have tried different speeds (such as 08c or 0.5c) and your method works out but what I am after is that you match the various distances, elapsed times and speeds which you discussed with the appropriate F.O.R.’s and also to “justify” your use of the 6 light-years initially (in this Stella-stationary approach) as the true “distance” between Terence and Stella such that when this magical distance is achieved, Stella begins her leftward 0.88235c gallop towards the slower but still moving Terence who continues moseying left at 0.6c.
6 light years was just the starting assumption of the distance in Terence's rest frame when Stella accelerated. It doesn't need to be justified since it's just how I originally defined the problem from the perspective of Terence's frame, you could easily have picked any other distance/time until Stella accelerated in this frame, if you preferred. What did need to be justified was the idea that
if Stella accelerated at a distance of 6 light years from Terence in Terence's frame,
then that implies that Stella accelerated at a distance of 4.8 light years in the frame of the inertial observer who saw Stella at rest during the outbound leg. I justified this by imagining a measuring-rod at rest relative to Terence, with one end lining up with Terence and the other end being 6 light-years away in Terence's rest frame, so that the other end lined up with Stella at the moment she accelerated.