MHB How Far Does a Bouncing Ball Travel Before Stopping?

Starkiller2301
Messages
2
Reaction score
0
Hi everybody, can you please help me with this question and with the working out?

A ball was dropped from a height of 270 m. On each rebound, it rose to 10% of the previous height. Find the total vertical distance traveled by the ball before coming to rest.
Thanks,
Starkiller2301
 
Mathematics news on Phys.org
Hello, Starkiller2301!

A ball was dropped from a height of 270 m.
On each rebound, it rose to 10% of the previous height.
Find the total vertical distance traveled by the ball before coming to rest.
Let x = original height.

First, the ball falls x meters.

It bounces up \tfrac{x}{10} m, and falls \tfrac{x}{10} m.
It bounces up \tfrac{x}{10^2} m, and falls \tfrac{x}{10^2} m.
It bounces up \tfrac{x}{10^3}\,m, and falls \tfrac{x}{10^3}\,m.
And so on.Total distance:

\quad d \;=\;x + 2(\tfrac{x}{10}) + 2(\tfrac{x}{10^2}) + 2(\tfrac{x}{10^3}) \cdots

\quad d \;=\;x\left[1 + \tfrac{2}{10}\underbrace{\left(1 + \tfrac{1}{10} + \tfrac{1}{10^2} +\tfrac{1}{10^3} + \cdots \right)}_{\text{geometric series}} \right]

The geometric series has sum \frac{1}{1-\frac{1}{10}} \:=\: \frac{1}{\frac{9}{10}} \:=\:\frac{10}{9}

d\;=\;x\left[1 + \tfrac{2}{10}\left(\tfrac{10}{9}\right)\right] \;=\;\tfrac{11}{9}x

Therefore: \;d \;=\;\tfrac{11}{9}(270) \;=\;330\text{ m.}

 
soroban said:
Hello, Starkiller2301!


Let x = original height.

First, the ball falls x meters.

It bounces up \tfrac{x}{10} m, and falls \tfrac{x}{10} m.
It bounces up \tfrac{x}{10^2} m, and falls \tfrac{x}{10^2} m.
It bounces up \tfrac{x}{10^3}\,m, and falls \tfrac{x}{10^3}\,m.
And so on.Total distance:

\quad d \;=\;x + 2(\tfrac{x}{10}) + 2(\tfrac{x}{10^2}) + 2(\tfrac{x}{10^3}) \cdots

\quad d \;=\;x\left[1 + \tfrac{2}{10}\underbrace{\left(1 + \tfrac{1}{10} + \tfrac{1}{10^2} +\tfrac{1}{10^3} + \cdots \right)}_{\text{geometric series}} \right]

The geometric series has sum \frac{1}{1-\frac{1}{10}} \:=\: \frac{1}{\frac{9}{10}} \:=\:\frac{10}{9}

d\;=\;x\left[1 + \tfrac{2}{10}\left(\tfrac{10}{9}\right)\right] \;=\;\tfrac{11}{9}x

Therefore: \;d \;=\;\tfrac{11}{9}(270) \;=\;330\text{ m.}
Thanks so much! I had the answer sheet but I didn't know how to get the answer. 330m was correct!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top