MHB How far does the tip of the hour hand move in 3 hours?

  • Thread starter Thread starter dtippitt
  • Start date Start date
  • Tags Tags
    Clock hand
dtippitt
Messages
5
Reaction score
0
How far to the nearest hundreth cm, does the tip of the hour hand on a clock move in exactly 3 hours if the hour had is 2.00 cm long?

I think you are supposed to use arc length formula.

This is what I got so far:

s=r(radian symbol) = 3=1(radian symbol)
 
Mathematics news on Phys.org
Re: Possible trignomery and distance formula

dtippitt said:
How far to the nearest hundreth cm, does the tip of the hour hand on a clock move in exactly 3 hours if the hour had is 2.00 cm long?

I think you are supposed to use arc length formula.

This is what I got so far:

s=r(radian symbol) = 3=1(radian symbol)

the hour hand of an analog clock moves 1/12 of a revolution in one hour.

one revolution is 2pi radians

$s = r \cdot \theta$

take it from here?
 
dtippitt said:
How far to the nearest hundreth cm, does the tip of the hour hand on a clock move in exactly 3 hours if the hour had is 2.00 cm long?

In 3 hours, the hour hand turns through a right angle, i.e. a quarter of a circle. What is a quarter of the circumference of a circle of radius 2 cm?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top