I How indistinguishable are photons?

  • Thread starter Thread starter Killtech
  • Start date Start date
  • Tags Tags
    Photons
Click For Summary
The discussion centers on the indistinguishability of photons and the implications for two-photon interference, particularly in relation to the Hong-Ou-Mandel (HOM) effect. It explores how varying amplitudes of photon beams at a beam splitter affect interference outcomes and whether quantum field theory (QFT) provides additional information about photons beyond their wave-like behavior. The conversation also delves into the complexities introduced by entangled states and how they influence interference patterns, especially when considering remote modes of entangled photons. Ultimately, the participants seek to understand the nuances of entanglement swapping and its implications for local versus non-local measurements in quantum mechanics. The intricacies of these interactions highlight the challenges in reconciling quantum theory with observable phenomena.
  • #31
DrChinese said:
've lost track of your various examples. But if you are talking about the AB + A'B' setup I commented on in #12: There is no difference in observable outcomes regardless of ordering of observations. That is true of all EPR entanglement setups, especially swapping setups.
No, i have reduced the structure i am querying about to the following two states in a similar 4 beam setup but a different source emitting a different initial state instead of two independent Bell pairs.

Killtech said:
  1. a 2-photon 4 beam entanglement with same polarizations:
    |ϕ⟩=|HA,HA′⟩+|HB,HB′⟩
    So this case is a mirror experimental setup with a mirror photon state - whichever path one photon chose (A or B), his mirror photon had to do the same but mirrored.
  2. a 4-photon 4 beam Bell state
    |ψ⟩=|HA,HA′,VB,VB′⟩+|VA,VA′,HB,HB′⟩
    Here the distinction is that the HOM interferences will differ when also taking into account polarization depending on the loss of coherence.
But you'll need to read a little more about the following discussion to follow the context, specifically to understand my statement about observable outcomes - since you need to know what what observables are being observed. The issue is that within the formalism the observable in question is technically non-local with the way no-signaling theorems use this word (and therefore failing to commute with observables in either part of the space), albeit it remains is a simple measurement.

The question moved on how physical such state would be since just because the formalism does allow to write them down doesn't make them necessarily realistic.
 
Physics news on Phys.org
  • #32
Killtech said:
1. a 4-photon 4 beam Bell state
|ψ⟩=|HA,HA′,VB,VB′⟩+|VA,VA′,HB,HB′⟩2. "...For those particular examples we see that it makes a difference whether a measurement of beam A is done before or after A'B' passes through their beam splitter and it is not mere change in correlations."
1. A 4 photon Bell state (presumably photons A A' B B') does not produce polarization as you have tried to write. There are a lot more outcomes to consider, such as |VA,HA′,HB,VB′⟩. To be clear: if these 4 are entangled together, there is no requirement that any pair subset follow perfect anti-correlations. On the other hand, if any 2 follow perfect anti-correlations, they are prohibited from being entangled to other particles due to monogamy of entanglement.

2. And again, I'll ask you to retract your statement per my challenge in #30. Or produce an appropriate reference. If you don't, I will pass this to the moderators as being personal speculation that is not generally accepted.
 
  • Like
Likes vanhees71
  • #33
Killtech said:
For those particular examples we see that it makes a difference whether a measurement of beam A is done before or after A'B' passes through their beam splitter and it is not mere change in correlations.
@DrChinese has already raised a valid challenge for this claim of yours:

DrChinese said:
I'll ask you to retract your statement per my challenge in #30. Or produce an appropriate reference. If you don't, I will pass this to the moderators as being personal speculation that is not generally accepted.
The moderators have already seen it. :wink:

@Killtech, I am closing this thread. If you are unable to supply a reference to back up your claim quoted above, the thread will remain closed. If you do have a reference, please PM me a link and the moderators will review it.
 
  • Like
Likes DrChinese and vanhees71

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
41
Views
6K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 76 ·
3
Replies
76
Views
6K
  • · Replies 64 ·
3
Replies
64
Views
5K
  • · Replies 1 ·
Replies
1
Views
963
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K