How Is Entropy Change Calculated in a Heat Transfer Problem?

Click For Summary
The discussion revolves around calculating the entropy change in a heat transfer problem involving a solid metallic cube and a thermal reservoir. The cube, initially at 300K, is brought into contact with a reservoir at 600K, leading to a thermal equilibrium. The correct entropy change of the universe after this process is determined to be 0.19S. Participants emphasize the need to consider the reservoir as having a large heat capacity, allowing it to maintain a constant temperature during the heat exchange. The solution involves integrating the change in entropy for both the cube and the reservoir while applying the principle of energy conservation.
astrophysics12
Messages
12
Reaction score
0

Homework Statement


A solid metallic cube of heat capacity S is at temperature 300K. It is brought in contact with a reservoir at 600K. If the heat transfer takes place only between the reservoir and the cube, the entropy change of the universe after reaching the thermal equillibrium is

A. 0.69S
B. 0.54S
C. 0.27S
D. 0.19S

[Answer : 0.19S]

Homework Equations


(heat supplied)=SΔT

Q = SΔT

Change in entropy = (change in heat Q)/T

ΔE = Q/T

[I have taken entropy as E rather than usual S since S is already taken for heat capacity]

The Attempt at a Solution


[/B]
Should I take reservoir as an infinite pool of temperature? Then, I get

Q = SΔT
Q=S*(600-300) since, at thermal equillibrium the temperatures are same
Q=300S
ΔE=(300/600)=0.5 which is not the answer

If I take reservoir which loses temperature, I am unable to continue with the problem since I do not know the heat capacity of it.

Is there a different approach to this problem?
 
Physics news on Phys.org
astrophysics12 said:

Homework Statement


A solid metallic cube of heat capacity S is at temperature 300K. It is brought in contact with a reservoir at 600K. If the heat transfer takes place only between the reservoir and the cube, the entropy change of the universe after reaching the thermal equillibrium is

A. 0.69S
B. 0.54S
C. 0.27S
D. 0.19S

[Answer : 0.19S]

Homework Equations


(heat supplied)=SΔT

Q = SΔT

Change in entropy = (change in heat Q)/T

ΔE = Q/T

[I have taken entropy as E rather than usual S since S is already taken for heat capacity]

The Attempt at a Solution


[/B]
Should I take reservoir as an infinite pool of temperature? Then, I get

Q = SΔT
Q=S*(600-300) since, at thermal equillibrium the temperatures are same
Q=300S
ΔE=(300/600)=0.5 which is not the answer

If I take reservoir which loses temperature, I am unable to continue with the problem since I do not know the heat capacity of it.

Is there a different approach to this problem?

Bits are right, but a lot of what you have is incorrect.

BTW this is a HORRIBLE problem -- it seems like the person who wrote the problem is trying to confuse you with the heat capacity = "S' garbage.

dS = dqrev/T

For the block, to calculate Delta S, you will need to integrate the above over the temperature range.

For the bath, assuming that the bath has a huge heat capacity, and does not change temperature (T is constant), then Delta S bath = Qbath/T

To find Qbath, you need to find Qblock (Qbath = - Qblock -- energy is conserved). Qblock can be found from "S" Delta T, as you have noted.

Delta S Universe = Delta S block + Delta S bath
 
Thanks a lot. I got it.

This is actually from a question paper that I was practicing.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
522
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 3 ·
Replies
3
Views
7K