- #1
mitch_jacky
- 10
- 0
I just started learning about morphisms and I came across a problem that totally stumps me. Here goes:
Show that the algebra of quaternions is isomorphic to the algebra of matrices of the form:
\begin{pmatrix}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha} \end{pmatrix}
where α,β[itex]\in[/itex]ℂ and the overbar indicates complex conjugation.
[Hint: If q=a+bi+cj+dk is a quaternion, identify it with the matrix whose entries are [itex]\alpha[/itex] =a+bi, [itex]\beta[/itex] =c+di, [itex]\bar{\alpha}[/itex] =a-bi, -[itex]\bar{\beta}[/itex] =-c+di, (a,b,c,d) [itex]\in[/itex]ℝ, i[itex]^{2}[/itex]=j[itex]^{2}[/itex]=k[itex]^{2}[/itex]=-1]
Thanks a lot everyone!
Show that the algebra of quaternions is isomorphic to the algebra of matrices of the form:
\begin{pmatrix}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha} \end{pmatrix}
where α,β[itex]\in[/itex]ℂ and the overbar indicates complex conjugation.
[Hint: If q=a+bi+cj+dk is a quaternion, identify it with the matrix whose entries are [itex]\alpha[/itex] =a+bi, [itex]\beta[/itex] =c+di, [itex]\bar{\alpha}[/itex] =a-bi, -[itex]\bar{\beta}[/itex] =-c+di, (a,b,c,d) [itex]\in[/itex]ℝ, i[itex]^{2}[/itex]=j[itex]^{2}[/itex]=k[itex]^{2}[/itex]=-1]
Thanks a lot everyone!