How is the Fermi coupling constant related to the muon decay lifetime?

  • Context: Graduate 
  • Thread starter Thread starter Orion1
  • Start date Start date
  • Tags Tags
    Decay Lifetime Muon
Click For Summary
SUMMARY

The Fermi coupling constant (GF) is quantitatively related to the muon decay lifetime (τμ) through the equation GF/(\hbar c)3 = √(192π3ℏ/(mμc2)5τμ). The muon decay width (Γμ) is derived from the Fermi constant and the mass of the muon, with a calculated value of approximately 3.00867837568648 × 10-19 GeV. The dimensionless ratio x = me2/mμ2 is significantly less than 1, confirming the validity of the approximation used in calculations. The muon lifetime is confirmed to be 2.197034 × 10-6 s, consistent with established references.

PREREQUISITES
  • Understanding of particle physics concepts such as decay width and lifetime
  • Familiarity with the Fermi coupling constant (GF) and its significance
  • Knowledge of quantum mechanics principles, particularly related to particle interactions
  • Ability to perform calculations involving physical constants and units
NEXT STEPS
  • Study the derivation of the Fermi coupling constant in electroweak theory
  • Learn about the implications of muon decay in particle physics
  • Explore the role of the I(x) function in decay width calculations
  • Investigate the relationship between the electroweak fine structure constant (αw) and particle decay processes
USEFUL FOR

Physicists, researchers in particle physics, and students studying quantum mechanics or electroweak interactions will benefit from this discussion.

Orion1
Messages
961
Reaction score
3

I am inquiring if anyone here is qualified to numerically calculate the following equation:

Fermi coupling constant and Muon decay lifetime: (ref. 1)
\frac{G_F}{(\hbar c)^3} = \sqrt{\frac{192 \pi^3 \hbar}{(m_{\mu} c^2)^5 \tau_{\mu}}

Muon decay lifetime: (ref. 2)
\tau_{\mu} = 2.197034 \cdot 10^{- 6} \; \text{s}

According to ref. 3, the Fermi coupling constant is:
\frac{G_F}{(\hbar c)^3} = 1.166391 \cdot 10^{- 5} \; \text{GeV}^{- 2}

Muon decay width and lifetime: ?
\Gamma_{\mu} = \frac{1}{\tau_{\mu}}

However, according to ref. 2, the muon decay width is:
\Gamma_{\mu} = \frac{G_F^2 m_\mu^5}{192\pi^3} I \left(\frac{m_e^2}{m_\mu^2}\right)

I(x)=1-8x+12x^2ln\left(\frac{1}{x}\right)+8x^3-x^4

Also, Wikipedia ref. 2 does not explain what the I(x) function is, or what x represents.

I presume that:
I(x) = I \left(\frac{m_e^2}{m_\mu^2}\right) \; \; \; x = \frac{m_e^2}{m_\mu^2}

Muon decay width: (ref. 4)
\Gamma_{\mu} = 3 \cdot 10^{- 19} \; \text{GeV}

key:
G_F - Fermi coupling constant
m_{e} - electron mass
m_{\mu} - muon mass
[/Color]
Reference:
http://www.physics.union.edu/images/summer06/pochedley.pdf"
http://en.wikipedia.org/wiki/Muon"
http://en.wikipedia.org/wiki/Physical_constant"
http://books.google.com/books?id=-S...=M5VYRBiseTeT87rr7tjglfO6AAo&hl=en#PPA149,M1"
 
Last edited by a moderator:
Physics news on Phys.org
I did muon calculation last week infact, however we did fermi contact approximation and assumed \frac{m_e^2}{m_\mu^2} << 1.

i.e. we assued I(\frac{m_e^2}{m_\mu^2}) = 1



Just use mass of muon= m_{\mu} = 0.105658369 \text{GeV} and
G_F = 1.166 \cdot 10^{-5} \text{GeV} ^{-1}

Then convert the witdh \Gamma into S.I units, i.e Joule

Then, at last: \tau = \hbar / \Gamma

Good luck
 
malawi_glenn said:
I did muon calculation last week infact, however we did fermi contact approximation and assumed \frac{m_e^2}{m_\mu^2} << 1
It is easy to plug in the values and check that the more refined calculation provides a very small correction. Besides, wikipedia does give the appropriate reference...
 
yes, with all that, I obtained lifetime = 2.1888 * 10^-6 s
 

Thanks malawi glenn and humanino for your collaboration!

x = \frac{m_e^2}{m_\mu^2} << 1

Dimensionless x value obtained:
x = \frac{m_e^2}{m_\mu^2} = \frac{(0.00051099891844 \; \text{GeV})^2}{(0.105658369 \; \text{GeV})^2} = 2.33901042277445 \cdot 10^{- 5} \ll 1

\boxed{x = 2.33901042277445 \cdot 10^{- 5}}

I(x) = 1 - 8x + 12x^2 ln \left( \frac{1}{x} \right)+ 8 x^3 - x^4
I \left( \frac{m_e^2}{m_\mu^2} \right) < 1
\boxed{I \left( \frac{m_e^2}{m_\mu^2} \right) = 0.999812949171918}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Electron"
http://en.wikipedia.org/wiki/Muon"
 
Last edited by a moderator:

Unit key:
\Gamma_{\mu} = \text{GeV} - Muon decay width
m_{e} = \text{GeV} - Electron mass
m_{\mu} = \text{GeV} - Muon mass
\tau_{\mu} = \text{s} - Muon lifetime

Wikipedia Muon lifetime:
\tau_{\mu} = 2.197034 \cdot 10^{- 6} \; \text{s}

Muon decay width:
\Gamma_{\mu} = \frac{\hbar}{10^{9} e \tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} I \left( \frac{m_e^2}{m_\mu^2} \right)
e - electron charge magnitude

Muon decay width with leptonic correction term:
\boxed{\Gamma_{\mu} = 3.00867837568648 \cdot 10^{- 19} \; \text{GeV}}

Fermi coupling constant:
\boxed{G_F = \sqrt{ \frac{192 \pi^3 \hbar}{10^{9} e m_{\mu}^5 \tau_{\mu} I \left( \frac{m_e^2}{m_\mu^2} \right) }}}

Solution for Fermi coupling constant with Wikipedia Electron and Muon mass and Muon lifetime and leptonic correction term:
\boxed{G_F = 1.16391365532758 \cdot 10^{- 5} \; \text{GeV}^{- 2}}

Wikipedia Fermi coupling constant:
\boxed{G_F = 1.166391 \cdot 10^{- 5} \; \text{GeV}^{- 2}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Muon"
http://en.wikipedia.org/wiki/Physical_constant"
 
Last edited by a moderator:

Muon lifetime:
\boxed{\tau_{\mu} = \frac{192 \pi^3 \hbar}{10^{9} e G_F^2 m_{\mu}^5 I \left( \frac{m_e^2}{m_\mu^2} \right)}}

\boxed{\tau_{\mu} = 2.19703403501795 \cdot 10^{- 6} \; \text{s}}

Wikipedia Muon lifetime:
\boxed{\tau_{\mu} = 2.197034 \cdot 10^{- 6} \; \text{s}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Muon"
http://en.wikipedia.org/wiki/Physical_constant"
 
Last edited by a moderator:
Wery good! Now do the contribution from second order feynman amplitudes =D
 

\Gamma_{\mu} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} I \left( \frac{m_e^2}{m_\mu^2} \right) = \alpha_w^2 \frac{m_{\mu}^5}{m_W^4}

key:
\alpha_w - electroweak fine structure constant
m_W = 80.398 \; \text{GeV} - W Boson mass

Electroweak fine structure constant:
\boxed{\alpha_w = G_F m_W^2 \sqrt{\frac{I \left( \frac{m_e^2}{m_\mu^2} \right)}{192 \pi^3}}}

\boxed{\alpha_w = 9.77054112064435 \cdot 10^{- 4}}

key:
\alpha_s = 1 - strong fine structure constant
m_p = 0.9382720298 \; \text{GeV} - Proton mass
m_X - X Boson mass
\Gamma_p - Proton decay width
\tau_p = 3.1536 \cdot 10^{42} \; \text{s} \; \; \; (10^{35} \; \text{years}) - Super-Kamiokande Proton decay lifetime

\Gamma_p = \frac{\hbar}{10^{9} e \tau_p} = \alpha_s^2 \frac{m_p^5}{m_X^4}

\boxed{\Gamma_p = 2.08717693773387 \cdot 10^{- 67} \; \text{GeV}}

X Boson mass:
\boxed{m_X = \left( \frac{10^9 e t_p m_p^5 \alpha_s^2}{\hbar} \right)^{\frac{1}{4}}}

\boxed{m_X = 4.32037202924731 \cdot 10^{16} \; \text{GeV}}
[/Color]
Reference:
http://books.google.com/books?id=-S...=M5VYRBiseTeT87rr7tjglfO6AAo&hl=en#PPA149,M1"
http://en.wikipedia.org/wiki/Proton_decay"
http://en.wikipedia.org/wiki/W_and_Z_bosons"
http://en.wikipedia.org/wiki/X_and_Y_bosons"
http://en.wikipedia.org/wiki/Electronuclear_force"
http://en.wikipedia.org/wiki/Grand_unification_theory"
http://hyperphysics.phy-astr.gsu.edu/hbase/astro/unify.html#c1"

malawi_glenn said:
It is a strong interaction!
 
Last edited by a moderator:
  • #10
What are you doing?

"It is a strong interaction" is my signature for all my posts:P
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 16 ·
Replies
16
Views
6K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K