How Is the Inverse Hyperbolic Tangent Derived from Its Definition?

Click For Summary
SUMMARY

The inverse hyperbolic tangent function, denoted as $\tanh^{-1}{x}$, is derived from its definition as the inverse of the hyperbolic tangent function. For $x \in (-1, 1)$, it is established that $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. The derivation utilizes the definition of hyperbolic tangent, $\tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$, and leads to the series expansion of $\tanh^{-1}{x}$ up to the term containing $x^5$, resulting in $x + \frac{x^3}{3} + \frac{x^5}{5} + \mathcal{O}(x^6)$. The discussion also emphasizes the importance of identifying the region of convergence for the series.

PREREQUISITES
  • Understanding of hyperbolic functions, specifically $\tanh$ and its properties.
  • Familiarity with logarithmic identities and their applications in calculus.
  • Knowledge of Taylor series expansions and convergence criteria.
  • Basic proficiency in manipulating exponential functions and their relationships.
NEXT STEPS
  • Study the derivation of hyperbolic functions and their inverses in detail.
  • Learn about the Taylor series expansion and its applications in approximating functions.
  • Explore the concept of convergence in series, including radius and interval of convergence.
  • Investigate the relationship between hyperbolic functions and trigonometric functions.
USEFUL FOR

Mathematicians, students studying calculus or advanced mathematics, and anyone interested in the properties and applications of hyperbolic functions and their inverses.

Guest2
Messages
192
Reaction score
0
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?
 
Physics news on Phys.org
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)
 
Guest said:
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?

I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -

Guest said:
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)

That is correct, nice job. You should also say what the region of convergence is though.
 
Prove It said:
I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -
That is correct, nice job. You should also say what the region of convergence is though.
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?
 
Guest said:
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?

Any series which is generated from combining two or more other series only converges where the original series all converged.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K