How Is the Inverse Hyperbolic Tangent Derived from Its Definition?

Click For Summary

Discussion Overview

The discussion revolves around the derivation of the inverse hyperbolic tangent function, arctanh, from its definition as the inverse of the hyperbolic tangent function. Participants explore both the mathematical derivation and the series expansion of arctanh, focusing on the expression for $x \in (-1, 1)$ and the expansion up to the term containing $x^5$.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a derivation showing that $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$ using the definition of hyperbolic tangent.
  • Another participant confirms the derivation and provides a series expansion for $\tanh^{-1}{x}$, stating it is $x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$.
  • A later reply suggests that resolving the problem into a quadratic equation may be easier, reiterating the derivation steps but in a different format.
  • One participant mentions the importance of stating the region of convergence for the series expansion.
  • Another participant questions how to determine the radius of convergence when combining two series.

Areas of Agreement / Disagreement

Participants generally agree on the derivation of the inverse hyperbolic tangent function, but there are differing views on the method of expansion and the implications of convergence. The discussion remains unresolved regarding the specifics of determining the radius of convergence for combined series.

Contextual Notes

Limitations include the dependence on the definitions used for the hyperbolic functions and the series expansions, as well as the unresolved nature of the radius of convergence when combining series.

Guest2
Messages
192
Reaction score
0
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?
 
Physics news on Phys.org
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)
 
Guest said:
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?

I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -

Guest said:
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)

That is correct, nice job. You should also say what the region of convergence is though.
 
Prove It said:
I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -
That is correct, nice job. You should also say what the region of convergence is though.
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?
 
Guest said:
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?

Any series which is generated from combining two or more other series only converges where the original series all converged.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K