MHB How Is the Inverse Hyperbolic Tangent Derived from Its Definition?

Guest2
Messages
192
Reaction score
0
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?
 
Physics news on Phys.org
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)
 
Guest said:
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?

I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -

Guest said:
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)

That is correct, nice job. You should also say what the region of convergence is though.
 
Prove It said:
I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -
That is correct, nice job. You should also say what the region of convergence is though.
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?
 
Guest said:
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?

Any series which is generated from combining two or more other series only converges where the original series all converged.
 

Similar threads

Back
Top