MHB How Is the Inverse Hyperbolic Tangent Derived from Its Definition?

Click For Summary
The discussion focuses on deriving the inverse hyperbolic tangent function, arctanh, from its definition as the inverse of the hyperbolic tangent function. It is established that for x in the interval (-1, 1), arctanh(x) can be expressed as (1/2)log((1+x)/(1-x)). The participants also explore the series expansion of arctanh(x) up to the x^5 term, concluding that it equals x + (x^3)/3 + (x^5)/5 + O(x^6). Additionally, the importance of identifying the region of convergence for the derived series is emphasized, noting that the combined series converges only where all original series converge. The conversation highlights both the mathematical derivation and the implications of convergence in series.
Guest2
Messages
192
Reaction score
0
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?
 
Physics news on Phys.org
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)
 
Guest said:
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?

I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -

Guest said:
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)

That is correct, nice job. You should also say what the region of convergence is though.
 
Prove It said:
I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -
That is correct, nice job. You should also say what the region of convergence is though.
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?
 
Guest said:
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?

Any series which is generated from combining two or more other series only converges where the original series all converged.
 

Similar threads

Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K