How is the Matrix in Momentum Representation Derived?

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
..
Relevant Equations
.
1616512209808.png

$$\langle p | W | p' \rangle = \int \langle p | x \rangle \langle x W | x' \rangle \langle x' p' \rangle dx dx'$$
$$\langle p | W | p' \rangle = \int \langle p | x \rangle \delta(x-x') W(x) \langle x' | p' \rangle dx dx'$$
$$\langle p | W | p' \rangle = \int \langle p | x' \rangle W(x') \langle x' | p' \rangle dx'$$
$$* \langle p | W | p' \rangle = W(x') \langle p |p' \rangle$$
$$\langle p | W | p' \rangle = \delta (p-p') W(x')$$

To get * from the previous equation, i assumed that ##\int x'\rangle \langle x' dx' = 1##. But i am not sure if i can just take it out, because i don't really know if the W(x') does affect something in this integral.

Or is this right?
 
Physics news on Phys.org
No, you can’t do that. You’re integrating over ##x’##, so it shouldn’t appear in the final result.
 
Hint: Think about what is ##\langle x|p \rangle=\langle p|x \rangle^*##. Also it's clear that your result cannot depend on ##x##, because ##\hat{W}## doesn't depend on ##x##.
 
I could try to go on: ##\langle x | p \rangle = c e^{ikx}##, with this the integral reduce to
$$c c^{*} \int W(x') e^{(ik'-ik)x'} dx'$$

Now, i need to review Fourier transform, but maybe i could say that $$ \langle x | p \rangle = c c^{*} \hat W (p)$$ ?
 
No, you first formula is right:
$$\langle x|p \rangle=u_p(x)=\frac{1}{\sqrt{2 \pi \hbar}} \exp(\mathrm{i} p x/\hbar).$$
Now start again with your initial formula in #1.
 
vanhees71 said:
No, you first formula is right:
$$\langle x|p \rangle=u_p(x)=\frac{1}{\sqrt{2 \pi \hbar}} \exp(\mathrm{i} p x/\hbar).$$
Now start again with your initial formula in #1.
I will try to go step by step.

$$\int \int \frac{dxdx'}{2 \pi \hbar} exp(i(p'x'-px)/\hbar) \delta(x-x') W(x)$$
$$ \frac{1}{2 \pi \hbar} \int exp( \frac{-2 \pi i (p-p')x'}{2 \pi \hbar}) W(x') dx' $$
$$ \frac{1}{2 \pi \hbar} \int exp( -2 \pi i f x' ) W(x') dx' = \frac{\hat W (t)}{2 \pi \hbar}$$
$$ \langle p | W | p' \rangle = \frac{\hat W (t)}{2 \pi \hbar} = \frac{K (\frac{p-p'}{2 \pi \hbar})}{2 \pi \hbar}$$

Where K is the spectrum of W
At least it is beautiful now
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top