rick_2009
- 1
- 0
This is about the electric field of a ring with radius r, at a distance z from center, along the axis of the ring. The ring carries a uniform line charge \lambda. We always say that the radial component of the field cancels out due to symmetry. Can somebody tell how to prove it mathematically (using cylindrical coordinate system only)?
dE_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda d\theta}{(r^2+z^2)}\hat{\textbf{r}}
E_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda}{(r^2+z^2)}\int_0^{2\pi} \hat{\textbf{r}} d\theta
?
dE_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda d\theta}{(r^2+z^2)}\hat{\textbf{r}}
E_{rad}=-\frac{1}{4\pi\epsilon_0}\frac{r\lambda}{(r^2+z^2)}\int_0^{2\pi} \hat{\textbf{r}} d\theta
?