MHB How Long for 61Co to Reduce to 80% of Its Initial Value?

Click For Summary
The discussion centers on calculating the time it takes for the radioactive isotope 61Co, with a half-life of 100 minutes, to reduce to 80% of its initial value. The solution involves using the decay formula \(Q=2^{-t/100}\) to determine the time \(t\). By setting up the equation \(0.8=2^{-t/100}\) and applying logarithms, the calculation leads to \(t=-\frac{100\log(0.8)}{\log(2)}\). The final answer is determined to be 32 minutes. This method effectively demonstrates the application of logarithmic functions in radioactive decay problems.
CaptainBlack
Messages
801
Reaction score
0
Jimson asks over on Yahoo Answers

I've got some A2 physics homework and unfortunately i can't seem to do the first question :

The question is: 61Co has a half life of 100 minutes. how long will it take for the radioactive isotope to reduce to 80% of the initial value?

The answer is 32 minutes, but of course i'll need the workings before it to actually prove i can do the question.

Thank you for any help given! (if any is anyway).


The key idea is that after 100 minutes 1/2 remains after 200 minutes 1/4 remains so the fraction remaining after \(t\) minutes is:

\[Q=2^{-t/100}\]

So if \(80\%\) remains we need to solve:

\[0.8=2^{-t/100}\]

which we do by taking logs (the base is unimportant as long as we use the sane base throughout):

\[\log(0.8)= -\; \frac{t}{100} \log(2)\]

So:

\[t=- \; \frac{\log(0.8)}{\log(2)} \times 100\]
 
Mathematics news on Phys.org
So since this thread is almost 10 years old, it is safe to provide the numerical answer, $$t=-\frac{100\log(0.8)}{\log(2)}=32~\text{min.}$$
 
  • Like
Likes Greg Bernhardt
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
3K
Replies
2
Views
3K
Replies
4
Views
2K