How Many Bright Spots Are Visible When Laser Shines Through Slits?

  • Thread starter Thread starter hellowmad
  • Start date Start date
  • Tags Tags
    Laser
AI Thread Summary
The discussion centers on calculating the number of observable bright spots when a laser shines through two slits. Using the equation for diffraction, the first minimum's angular position is determined, leading to the conclusion that a total of five smaller bright spots can be observed within the central bright region. The calculations involve parameters such as wavelength, slit width, and the distance between the slits. Participants confirm the accuracy of the calculations and clarify the intent of the original question. Overall, the analysis supports the conclusion of five observable bright spots.
hellowmad
Messages
11
Reaction score
2
Homework Statement
The 480 nm laser is incident on an opaque barrier with a single slit of width 8.0 x 10-5 m. A screen to view the light intensity pattern is 2.0 m behind the barrier. Then a 2nd slit of the same width is made in the barrier. The centers of the slits are 2.4 x 10-4 m apart. Approximately how many smaller bright spots are now observable within the central bright region?
Relevant Equations
d sinθ = mλ for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(constructive)
d sinθ = (m + 1/2 λ) for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(destructive)
x =λml/d
.
The angular position of t)he first diffraction minimum is θ≈sinθ= λ/a, and dsinθ=mλ, so m = (dsinθ) /=[d(λ/a)]/λ =d/a = (2.4 x 10-4 m)/(8.0 x 10-5 m) =3.
Since both bright and dark pots separated on both sides of central bright region, so the smaller bright spots observable within the central bright region is -2, -1, 0, 1, and 2, which leads to total 5.
I want to see if I do it right.
Thanks
 
Last edited:
Physics news on Phys.org
hellowmad said:
I want to see if I do it right.
Well, there's a picture here. Is that what you mean with your question ?

(PF doesn't really do approval stamps :wink: .)

##\ ##
 
hellowmad said:
Homework Statement: The 480 nm laser is incident on an opaque barrier with a single slit of width 8.0 x 10-5 m. A screen to view the light intensity pattern is 2.0 m behind the barrier. Then a 2nd slit of the same width is made in the barrier. The centers of the slits are 2.4 x 10-4 m apart. Approximately how many smaller bright spots are now observable within the central bright region?
Relevant Equations: d sinθ = mλ for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(constructive)
d sinθ = (m + 1/2 λ) for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(destructive)
x =λml/d
.

The angular position of t)he first diffraction minimum is θ≈sinθ= λ/a, and dsinθ=mλ, so m = (dsinθ) /=[d(λ/a)]/λ =d/a = (2.4 x 10-4 m)/(8.0 x 10-5 m) =3.
Since both bright and dark pots separated on both sides of central bright region, so the smaller bright spots observable within the central bright region is -2, -1, 0, 1, and 2, which leads to total 5.
I want to see if I do it right.
Thanks
Looks right to me.
 
BvU said:
Well, there's a picture here. Is that what you mean with your question ?

(PF doesn't really do approval stamps :wink: .)

##\ ##
Yes it is want I mean. Thanks.
 
haruspex said:
Looks right to me.
thank for checking
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top