How Many Bright Spots Are Visible When Laser Shines Through Slits?

  • Thread starter Thread starter hellowmad
  • Start date Start date
  • Tags Tags
    Laser
AI Thread Summary
The discussion centers on calculating the number of observable bright spots when a laser shines through two slits. Using the equation for diffraction, the first minimum's angular position is determined, leading to the conclusion that a total of five smaller bright spots can be observed within the central bright region. The calculations involve parameters such as wavelength, slit width, and the distance between the slits. Participants confirm the accuracy of the calculations and clarify the intent of the original question. Overall, the analysis supports the conclusion of five observable bright spots.
hellowmad
Messages
11
Reaction score
2
Homework Statement
The 480 nm laser is incident on an opaque barrier with a single slit of width 8.0 x 10-5 m. A screen to view the light intensity pattern is 2.0 m behind the barrier. Then a 2nd slit of the same width is made in the barrier. The centers of the slits are 2.4 x 10-4 m apart. Approximately how many smaller bright spots are now observable within the central bright region?
Relevant Equations
d sinθ = mλ for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(constructive)
d sinθ = (m + 1/2 λ) for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(destructive)
x =λml/d
.
The angular position of t)he first diffraction minimum is θ≈sinθ= λ/a, and dsinθ=mλ, so m = (dsinθ) /=[d(λ/a)]/λ =d/a = (2.4 x 10-4 m)/(8.0 x 10-5 m) =3.
Since both bright and dark pots separated on both sides of central bright region, so the smaller bright spots observable within the central bright region is -2, -1, 0, 1, and 2, which leads to total 5.
I want to see if I do it right.
Thanks
 
Last edited:
Physics news on Phys.org
hellowmad said:
I want to see if I do it right.
Well, there's a picture here. Is that what you mean with your question ?

(PF doesn't really do approval stamps :wink: .)

##\ ##
 
hellowmad said:
Homework Statement: The 480 nm laser is incident on an opaque barrier with a single slit of width 8.0 x 10-5 m. A screen to view the light intensity pattern is 2.0 m behind the barrier. Then a 2nd slit of the same width is made in the barrier. The centers of the slits are 2.4 x 10-4 m apart. Approximately how many smaller bright spots are now observable within the central bright region?
Relevant Equations: d sinθ = mλ for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(constructive)
d sinθ = (m + 1/2 λ) for m = 0, 1, -1, 2, -2, 3, -3, 4, -4, ….(destructive)
x =λml/d
.

The angular position of t)he first diffraction minimum is θ≈sinθ= λ/a, and dsinθ=mλ, so m = (dsinθ) /=[d(λ/a)]/λ =d/a = (2.4 x 10-4 m)/(8.0 x 10-5 m) =3.
Since both bright and dark pots separated on both sides of central bright region, so the smaller bright spots observable within the central bright region is -2, -1, 0, 1, and 2, which leads to total 5.
I want to see if I do it right.
Thanks
Looks right to me.
 
BvU said:
Well, there's a picture here. Is that what you mean with your question ?

(PF doesn't really do approval stamps :wink: .)

##\ ##
Yes it is want I mean. Thanks.
 
haruspex said:
Looks right to me.
thank for checking
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top