MHB How Many Elements Are Found in Each Mathematical Set?

lemonthree
Messages
47
Reaction score
0
Question: How many elements are in each set?

For the first set, I think it's 8995 because the set is the union of {1,2,3,4,5},{1,2,3,4,5,6},...{1,2,3,...9000}. So 9000 - 5 = 8995.

For the second set, I'm not too sure about counting the elements in the set. Since $$1<x≤i$$, I can't think of any x mod i = 2.
For example, I know 5 mod 3 = 2, but 5 > 3 and in this case it wants i to be greater or equal to x...any hints please?
counting-sets.png
 
Physics news on Phys.org
There are, of course, 9000 integers from 1to 9000. Why are you subtracting 5? Which integers are missing?

A number, n, is congruent to 2 (mod i) if n= i+ 2. Every number, except 1 and 2, is equal to i+ 2 for some i.
 
lemonthree said:
Question: How many elements are in each set?

For the first set, I think it's 8995 because the set is the union of {1,2,3,4,5},{1,2,3,4,5,6},...{1,2,3,...9000}. So 9000 - 5 = 8995.
I think it's 8996, because you need to count both endpoints.

lemonthree said:
For the second set, I'm not too sure about counting the elements in the set. Since $$1<x≤i$$, I can't think of any x mod i = 2.
For example, I know 5 mod 3 = 2, but 5 > 3 and in this case it wants i to be greater or equal to x...any hints please?
If $i=1$ then the set $\{x\ |\ x \text{ is an integer and } 1<x\leqslant i \text{ and }x=2\pmod i\}$ is the empty set. For all other values of $i$ that set just consists of $x=2$. So your second set is $\emptyset\cup\{2\}$. It therefore contains two elements.
 
Both of you are quite right;

For the first question, there are 9000 elements. @Country Boy How do you know that there are 9000 elements though? Doesn't that symbol represent the union of indexed collection from i = 5 to i = 9000? I see it to be similar to the summation notation but I guess that's where I'm wrong.

For the second question, there is 1 element, i.e. {2}, so @Opalg you are right. We take ∅∪{2} to be equal to {2}. Thank you for the explanation, I realized I could view it as 2 = 0*i + 2, for various i values until infinity, which made sense for {2} to be the only element.
 
If $A\subseteq B$ then $A\cup B= B$. These sets are "nested" so the union is just the largest set.
 
lemonthree said:
Both of you are quite right;

For the first question, there are 9000 elements. @Country Boy How do you know that there are 9000 elements though? Doesn't that symbol represent the union of indexed collection from i = 5 to i = 9000? I see it to be similar to the summation notation but I guess that's where I'm wrong.

For the second question, there is 1 element, i.e. {2}, so @Opalg you are right. We take ∅∪{2} to be equal to {2}. Thank you for the explanation, I realized I could view it as 2 = 0*i + 2, for various i values until infinity, which made sense for {2} to be the only element.
Yes, you are correct. In both cases I was thinking in terms of a set of sets rather than a union of sets.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top