MHB How Many Numbers Less Than 1000 Divisible by 5 Are Formed Using Unique Digits?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Numbers
mathdad
Messages
1,280
Reaction score
0
The total number of numbers less than 1000 and divisible by 5 formed with 0,1,2,...9 such that each digit does not occur more than once in each number is what?

Solution:Divisible by 5 ==> number ending in 0 or 5.

Number of ways with no repeated digit:
[0, 9]---> ends in 5 = 1 way (only 5 here).

[10,99]
————> ends in 0 = 9 ways
————> ends in 5 = 8 ways (cannot use 55 )
————> 9 + 8 = 17 ways for two digit numbers in total

[100,999]
————> ends in 0 {once 0 is selected you are left with 9 digits)
{ 9 ways to select the 1st digit and 7 ways to select the 2nd digit}
9 x 8 = 72 ways
————> ends in 5 (cannot start with 0 but can use 0 for 2nd digit)
{8 ways to select 1st digit and 8 ways to select 2nd digit)
8 x 8 = 64 ways
————> 72 + 64 = 136 ways for three digit numbers in total

Number of numbers = 1 + 17 + 136 = 154 numbers

Is this right?
 
Last edited:
Mathematics news on Phys.org
Yes, this is right if you don't count 0.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top