How to calculate age of universe with a certain redshift?

Click For Summary
To calculate the age of the universe at a specific redshift, such as z = 10, one must first understand the scale factor and the relevant cosmological parameters. The current age of the universe is approximately 13 billion years, and using cosmological calculators like those by Ned Wright or Siobhan Morgan can provide quick estimates, yielding about 0.48 billion years for z = 10. For a more hands-on approach, integrating the Friedmann equation is necessary, taking into account the matter and cosmological constant densities. Simplified models can yield approximate results, but they may not account for the complexities of the universe's expansion. Understanding these calculations requires familiarity with cosmological principles and parameters.
detty_hk
Messages
7
Reaction score
0
Hi i am confused as to how to calculate the age of the universe with redshift
say for example

The age of the universe now is 13 billion years old (and a critical universe).
How do i find the age of the universe if it was a redshift at say 10??

Do i have to find the scale factor first?
I am not very sure, please help!
 
Astronomy news on Phys.org
detty_hk said:
Hi i am confused as to how to calculate the age of the universe with redshift
say for example

The age of the universe now is 13 billion years old (and a critical universe).
How do i find the age of the universe if it was a redshift at say 10??

Do i have to find the scale factor first?
I am not very sure, please help!

two good online cosmology calculators:

Ned Wright's
http://www.astro.ucla.edu/~wright/CosmoCalc.html

Siobahn Morgan's
http://www.earth.uni.edu/~morgan/ajjar/Cosmology/cosmos.html

homepage for Siobahn in case you want to see who she is
http://www.earth.uni.edu/smm.html
homepage for Ned in case you want to see who he is
http://www.astro.ucla.edu/~wright/intro.html


you asked about redshift z = 10

the answer you should get, if you put in today's best estimates of the parameters, is 0.48 billion years

that is, if you see light from a galaxy and that light is redshift 10
then it was emitted by the galaxy when the universe was only about half
a billion years old
 
Last edited by a moderator:
can you teach me how you actually do it?
I would like to do it myself and check, thx.
 
detty_hk said:
Hi i am confused as to how to calculate the age of the universe with redshift
say for example

The age of the universe now is 13 billion years old (and a critical universe).
How do i find the age of the universe if it was a redshift at say 10??

Do i have to find the scale factor first?
I am not very sure, please help!

If you need help using the calculators, just say.

they are both put up by astronomy professors to help their students.

the easiest to use is ned wright's

just go there, put 10 into the z box, don't change anything else
and press "general"
this will give the answer 0.482 billion years

however siobhan morgan's is fun to play with because she gives recession speeds too, which ned does not.
with her calculator you must type in 0.27 for Omega (matter fraction) and 0.73 for Lambda (cosmological constant or dark energy fraction) and 71 for the Hubble parameter. then put in z = 10.

ned wright already has these default values of the cosmological parameters set for you so he makes you do less work.
both calculators give the same answer, as you might expect
 
detty_hk said:
can you teach me how you actually do it?
I would like to do it myself and check, thx.

I already gave some pointers, now I will wait until you try and say if it came out

if you put in z = 10 then it should come out 0.48 billion years
 
nono I know how to play with the calculator
what i want to know is how to do the Calculations by hand.
thx
 
detty_hk said:
nono I know how to play with the calculator
what i want to know is how to do the Calculations by hand.
thx

bravo!

Lineweaver's article "Inflation and the Cosmic Microwave Background" has formulas. Look it up in arxiv.

or the Astronomy Reference thread here at PF has a link to Lineweaver.
 
argh there's too many to it
can someone teach me please?
 
why don't you try to solve a question for me and see if u guys can help:
if you can, please show it step by step

The current age of the universe is 13billion years old and assume that the universe is a flat universe (critical universe). What is the age of the universe at redshift 10?


sorry for all the fuss
 
  • #10
it is not a simple calculation. the integral needs to be solved numerically.
 
  • #11
would it help if i tell you that R(t) is proportional to t^(2/3)
and that
t = 2/3H^-1

where t = now and H = Hubble constant
 
  • #12
detty_hk said:
would it help if i tell you that R(t) is proportional to t^(2/3)
and that
t = 2/3H^-1

where t = now and H = Hubble constant

but detty! that formula is not right, it applies only to a simple case

for the real universe it is not true that the scale factor R(t) is proportional to t^(2/3)

Give us an online source for that formula, and i bet we can show you where it says that the formula only applies to a special (artificially simple) case.


this figure shows that the R(t) curve is not simply what you say but can be shaped different ways depending on the assumptions about the cosmological constant etc.

http://nedwww.ipac.caltech.edu/level5/March03/Lineweaver/Figures/figure14.jpg

here is the context in his "Inflation and the CMB"
http://nedwww.ipac.caltech.edu/level5/March03/Lineweaver/Lineweaver7_7.html

here is the TOC for that article
http://nedwww.ipac.caltech.edu/level5/March03/Lineweaver/Lineweaver_contents.html

here is the abstract, which has a link to a more legible PDF copy
http://lanl.arxiv.org/abs/astro-ph/0305179

I have helped all I can. have to go
 
Last edited:
  • #13
I know
but assume that it is, would i be able to solve it?
cos I'm stuck in a question and these are all the assumptions
 
  • #14
You want to assume the wrong formula is right? then it is easy
you just use the bad formula and get an answer.

you asked WHAT IS THE AGE AT REDSHIFT Z = 10

z = 10 means a ratio of 11 in the scale factor

the oversimplified formula says the scale factor R(t) is proportional to the age^(2/3)

so clearly 11 = age ratio ^(2/3)

so age ratio = 11^(3/2) = 36.5

to get the age of the universe at z = 10 you would therefore have to divide the age now, by the factor 36.5

but remember using this oversimplified model the present age of the universe is equal to 2/3 of the Hubble time, which works out to 9.2 billion years!

So, divide 9.2 billion years by 36.5 and you get

0.25 billion years

I think you could force Ned Wright's calculator to follow this wrong oversimplified formula by making the cosmological constant Lambda be zero and selecting the flat case, where Omega_matter = 1
 
Last edited:
  • Like
Likes Philip Robotic
  • #15
marcus said:
two good online cosmology calculators:

Ned Wright's
http://www.astro.ucla.edu/~wright/CosmoCalc.html

Siobahn Morgan's
http://www.earth.uni.edu/~morgan/ajjar/Cosmology/cosmos.html

homepage for Siobahn in case you want to see who she is
http://www.earth.uni.edu/smm.html
homepage for Ned in case you want to see who he is
http://www.astro.ucla.edu/~wright/intro.html


you asked about redshift z = 10

...

you said "assume that formula is right and do it by hand" OK I did, assuming the formula is right is the same as saying Lambda = 0
and Omega_matter = 1.
I did it by hand AND checked it with Siobhan Morgan calculator and it came out the same both times: age = 0.25 billion years.

That's all I have time for. I suggest you assume more realistic parameters like Lambda = 0.73 and Omega_matter = 0.27 and experiment with the calculators yourself
 
Last edited by a moderator:
  • Like
Likes Philip Robotic
  • #16
detty_hk said:
Hi i am confused as to how to calculate the age of the universe with redshift
say for example

The age of the universe now is 13 billion years old (and a critical universe).
How do i find the age of the universe if it was a redshift at say 10??

Do i have to find the scale factor first?
I am not very sure, please help!
If you neglect the energy density of radiation and consider that the universe is currently flat, you can make use of the following formula (which you can derive from the Friedmann equation):

dt = \frac{da}{H_0 \left(\frac{\Omega_{m,0}}{a} + a^2 \Omega_{\Lambda,0}\right)^{\frac{1}{2}}}

The subindices mean current values for the Hubble parameter (= 71 Km /s Mpc), Omega matter (= 0.27), Omega cosmological constant (= 0.73).

To get the age at a given redshift z, you have to integrate from a = 0, to a = 1/(1+z).
 
Last edited:
  • #17
detty_hk said:
would it help if i tell you that R(t) is proportional to t^(2/3)
and that
t = 2/3H^-1

If this is a question from a class, then I suspect your professor is asking you to consider a flat universe with only matter (i.e. no cosmological constant). The reason they have you make this simplifying assumption is that the equations are harder to solve for other situations. This simple model for the universe was considered for a long time before the acceleration was discovered, so it shouldn't be wildly off.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K