Calculating Force & Acceleration in Electrostatic Field (B=0)

Click For Summary

Discussion Overview

The discussion focuses on calculating the force and acceleration of a moving charge in an electrostatic field, specifically when the magnetic field (B) is zero. Participants explore the implications of relativistic effects on these calculations, considering both theoretical and practical aspects.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant questions how to calculate the force on a moving charge in an electrostatic field while accounting for relativistic effects, and whether the standard formula a=F/m is appropriate.
  • Another participant presents the Lagrangian formulation for a charge in an electromagnetic field, providing equations that relate force to electric and magnetic fields, noting that with B=0, the force simplifies to F=qE.
  • A later reply discusses the complexity of the relationship between force and acceleration in special relativity, suggesting that acceleration may not always align with the direction of the force.
  • Further contributions mention the concept of longitudinal and transverse mass as a historical approach to understanding these dynamics, indicating that while these ideas were once used by Einstein, they are not part of modern treatments.
  • Another participant references a document that outlines a method for applying Newtonian mechanics in the instantaneous rest frame of the particle and extending it to relativistic cases through Lorentz invariance, leading to the definition of four-velocity and four-momentum.

Areas of Agreement / Disagreement

Participants express various viewpoints on the appropriate methods for calculating force and acceleration in relativistic contexts, with no consensus reached on a singular approach or formula. The discussion remains unresolved regarding the best treatment of these concepts.

Contextual Notes

Participants highlight the limitations of classical mechanics in relativistic scenarios and the need for careful consideration of frame transformations and the definitions of force and mass in these contexts.

MichPod
Messages
231
Reaction score
46
For a case of electrostatic field (B is equal zero), how should the force acting on a moving charge be calculated if we want to take into account all the relativistic effects? Also would it be correct to calculate the acceleration of the charge as a=F/m, or should some other formula be used? For simplicity, as a special case, let's consider the velocity of the charge to be orthogonal to the vector E of the electric field.
 
Physics news on Phys.org
In an electromagnetic field the Lagrangian of the charge is ##L = -m \sqrt{1-v^2} + q \mathbf{A} \cdot \mathbf{v} - q \phi## therefore by Lagrange's equation $$\dfrac{d}{dt} \left( \dfrac{m\mathbf{v}}{\sqrt{1-v^2}} + q \mathbf{A} \right) = q\left[ (\mathbf{v} \cdot \nabla) \mathbf{A} + \mathbf{v} \times (\nabla \times \mathbf{A}) - \nabla \phi \right]$$Since the electric and magnetic field vectors are respectively defined ##\mathbf{E} = - \dfrac{\partial \mathbf{A}}{\partial t} - \nabla \phi## and ##\mathbf{B} = \nabla \times \mathbf{A}## this becomes ##\dfrac{d}{dt} \left(\dfrac{m\mathbf{v}}{\sqrt{1-v^2}} \right) = q( \mathbf{E} + \mathbf{v} \times \mathbf{B})##
 
Last edited:
  • Like
  • Informative
Likes   Reactions: MichPod, vanhees71 and Dale
MichPod said:
For a case of electrostatic field (B is equal zero), how should the force acting on a moving charge be calculated if we want to take into account all the relativistic effects? Also would it be correct to calculate the acceleration of the charge as a=F/m, or should some other formula be used? For simplicity, as a special case, let's consider the velocity of the charge to be orthogonal to the vector E of the electric field.

You might want to look at wiki, https://en.wikipedia.org/wiki/Classical_electromagnetism_and_special_relativity, or a textbook, if you have access and the appropriate background to read a textbook.

With B=0, you will see that F = qE, where E is the electric field.

You will also see the relativisitic transformation laws for the electric fields E and B, which do not transform as vectors. This only matters if you need to transform frames of reference. If you pick a frame of reference and stick with it, it may not be necessary to know how to correctly transform between frames.

The relationship between force and acceleration in SR is moderately complex, acceleration is not necessarily in the direction of the force (though in some special circumstances it can be).

One simple treatment that gives the correct results is the concept of longitudinal and transverse mass. See for instance https://en.wikipedia.org/wiki/Mass_in_special_relativity#Transverse_and_longitudinal_mass. As wiki mentions, these concepts were used by Einstein early on, but later abandoned by him, and others. So they're not a modern treatment, but may be useful as an introduction to someone who doesn't want the full treatment.
 
A simple treatment can also be found in Sects. 2.1 and 2.2 of

https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf

The upshot of the heuristics is that you can assume that Newtonian mechanics is (at least approximately) correct in the momentaneous rest frame of the particle. Then via Lorentz invariance you can extend the dynamics to the general case, which leads you to the conclusion that for massive particles you can just use the proper time of the particle instead of coordinate time, leading to the definition of the four-velocity and the four-momentum
$$p^{\mu}=m \mathrm{d}_{\tau} x^{\mu}.$$
since
$$(\mathrm{d}_{\tau} x^{\mu}) (\mathrm{d}_{\tau} x_{\mu})=c^2=\text{const}$$
the "on-shell condition"
$$p_{\mu} p^{\mu}=m^2 c^2$$
holds and thus the relativistic equation of motion
$$\mathrm{d}_{\tau} p^{\mu}=K^{\mu},$$
where ##K^{\mu}## is in general a function of ##x^{\mu}## and ##p^{\mu}##, implies the constraint
$$p_{\mu} \mathrm{d}_{\tau} p^{\mu}=0=p_{\mu} K^{\mu}.$$
That's why only three equations of motion are indpendent, and the fourth follows, and you can as well write the equation of motion for the spatial part of the above manifestly covariant version in terms of coordinate-time derivative, using ##\mathrm{d}_{\tau}=\gamma \mathrm{d}_t##. From this you get
$$\vec{p}=m \mathrm{d}_{\tau} \vec{x}=m \gamma \mathrm{d}_t \vec{x}.$$
and
$$\mathrm{d}_{\tau} \vec{p}=\gamma \mathrm{d}_t \vec{p}=\vec{K}$$
or
$$m \mathrm{d}_t (\gamma \mathrm{d}_t \vec{x})=\frac{1}{\gamma} \vec{K}=\vec{F}.$$
Now of course all the beauty of the covariant formulation is gone, but it's in a similar form as in Newtonian physics and still fully relativistic.
 
Last edited:
  • Like
Likes   Reactions: SiennaTheGr8

Similar threads

  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 5 ·
Replies
5
Views
992
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K