How to Calculate Radioactivity Activity

Click For Summary
The discussion centers on calculating the activity of a gamma radiation source based on the counts detected by a detector. The user correctly calculated the counts per second but struggled with incorporating the distance and area of the detector into their calculations. They initially attempted to estimate the total counts by considering the surface area of a sphere and the number of detectors that could fit into that area. Ultimately, the user realized that they should have used millimeters instead of converting to meters, which led to the correct calculation of the source's activity as 1.57x10^5 Bq. The methodology was validated, emphasizing the importance of using consistent units in calculations.
Magma828
Messages
28
Reaction score
0
Okay this question is in a section of my textbook that has no equations, apart from the slightly mathematical statement:

The rate at which a source emits radioactive particles is called its activity, A. An activity of one particle emitted per second is called a becquerel, Bq.

Here's the question..

A small source of gamma radiation is placed at a distance of 160 mm from a detector of area 18 mm^2. The count recorded on the detector after 30 minutes was 15804.

Estimate the activity of the source.


I worked out the counts detected per second (15804/30/60 = 8.78) but I don't know how to deal with the distance between the source and detector, or the area of the detector.

The final answer is supposed to be 1.57x10^5 Bq----

Okay I've got somewhere[ish] with the solution, but didn't get the correct answer:
The gamma source emits radioactivity in all directions, but is only detected by the 18mm^2 detector.

Calculating the total surface area of the sphere in which the detector could potentially be in is: 4 pi r^2 = 4 x 3.14 x 0.16^2 = 0.32m^2

If this surface area was full of detectors, the counts recorded would be 100% of the counts. The number of potential detectors you could fit into this space would be: total surface area / surface area of detector = 0.32/0.018 = 17.87 detectors.

Therefore, if 15804 counts are detected by one detector, the number of counts detected by 17.87 detectors would be 15804 x 17.87 = 282x10^3 counts in 30 minutes.

I'm sure my solution makes sense, but it's wrong!
 
Last edited:
Physics news on Phys.org


The radiation source emits gamma radiation uniformly (or almost uniformly) in all directions. The detector only managed to "capture" a certain percentage of the emitted gamma photons. So, to obtain the activity of the source, we have to calculate backwards using the fraction of photons emitted that were captured by the detector.

Now, since the radiation source emits gamma radiation uniformly in all directions, the gamma photons are spread out over a spherical surface. It thus follows that the fraction of photons captured by the detector is given by the surface area of the detector divided by the surface area of that spherical surface (the fraction of the spherical surface that is covered by the detector)
 


Does that mean that my solution is correct then? I think I've done what you said there:

Calculating the total surface area of the sphere in which the detector could potentially be in is: 4 pi r^2 = 4 x 3.14 x 0.16^2 = 0.32m^2

If this surface area was full of detectors, the counts recorded would be 100% of the counts. The number of potential detectors you could fit into this space would be: total surface area / surface area of detector = 0.32/0.018 = 17.87 detectors.

Therefore, if 15804 counts are detected by one detector, the number of counts detected by 17.87 detectors would be 15804 x 17.87 = 282x10^3 counts in 30 minutes.

Maybe I made a stupid mistake somewhere..

OOOOH nevermind, my methodology was right but I should have just used the distances and areas in mm (as it's just ratios) instead of incorrectly converting them to metres.

So yeah I've done it, thanks :D
 
Last edited:
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
3K