How to Calculate Rotational Inertia and Angular Momentum?

Click For Summary
To calculate the rotational inertia of the system, use Steiner's theorem, which involves adding the moment of inertia of the board to the contributions from each child, factoring in their distances from the axis of rotation. The correct formula for the board's inertia is 1/12*(mass)*(width^2 + length^2), while for each child, use I=mr^2 with r being L/2. For angular momentum, remember that it is conserved when the children pull themselves toward the center, indicating no external torque is acting on the system. The magnitude of angular momentum can be calculated using the formula L = Iω, where I is the total rotational inertia and ω is the angular speed. Accurate calculations and posting results are essential for verification and further assistance.
JB83
Messages
6
Reaction score
0
I am stuck on the first part of this question. I thought that I could add the Inertias for child 1 + child 2 + board and that would give me the answer. I used I=mr^2 for the children with the r being L/2 and 1/12*(mass)*(width^2 + length^2). as the I for the board. However I am not getting the right answer. Also I am unsure of how to calculate the angular momentum of the system Any help would be appreciated

Two children, each with mass m = 10.5 kg, sit on opposite ends of a narrow board with length L = 4.8 m, width W = 0.18 m, and mass M = 6.2 kg. The board is pivoted at its center and is free to rotate in a horizontal circle without friction. What is the rotational inertia of the board plus the children about a vertical axis through the center of the board?

What is the magnitude of the angular momentum of the system if it is rotating with an angular speed of 2.28 rad/s?

While the system is rotating, the children pull themselves toward the center of the board until they are half as far from the center as before. What is the resulting angular speed?
 
Physics news on Phys.org
JB83 said:
I am stuck on the first part of this question. I thought that I could add the Inertias for child 1 + child 2 + board and that would give me the answer. I used I=mr^2 for the children with the r being L/2 and 1/12*(mass)*(width^2 + length^2). as the I for the board. However I am not getting the right answer. Also I am unsure of how to calculate the angular momentum of the system Any help would be appreciated

Two children, each with mass m = 10.5 kg, sit on opposite ends of a narrow board with length L = 4.8 m, width W = 0.18 m, and mass M = 6.2 kg. The board is pivoted at its center and is free to rotate in a horizontal circle without friction. What is the rotational inertia of the board plus the children about a vertical axis through the center of the board?

What is the magnitude of the angular momentum of the system if it is rotating with an angular speed of 2.28 rad/s?

While the system is rotating, the children pull themselves toward the center of the board until they are half as far from the center as before. What is the resulting angular speed?

Well, for the first part, simply use Steiner's theorem on the system consisting of the board and the childern. You must add the mass of each child separately multiplied with its squared distance from the axis of rotation to the moment of inertia of the board, which you can find here: http://www.physics.uoguelph.ca/tutorials/torque/Q.torque.inertia.html" .

For the second part of the problem, with the children pulling themselves towards the center, here's a hint: there is no external torque - so what is conserved?
 
Last edited by a moderator:
JB83 said:
I am stuck on the first part of this question. I thought that I could add the Inertias for child 1 + child 2 + board and that would give me the answer. I used I=mr^2 for the children with the r being L/2 and 1/12*(mass)*(width^2 + length^2). as the I for the board. However I am not getting the right answer. . . .
You have the right approach for I. If you do not post your answer, there is no way we can check to see if you did the calculation correctly.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
5
Views
1K
Replies
335
Views
15K
Replies
67
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
10
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 17 ·
Replies
17
Views
846
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
9
Views
3K