I How to calculate the ring resonator radii via Laplace?

AI Thread Summary
Two approaches for calculating ring resonator dimensions yield slightly different results. The first method uses the relationship between the waveguide wavelength and the ring's circumference, which provides consistent results. The second method involves solving the Laplace equation in cylindrical coordinates, leading to a more complex condition for the radii. The discrepancy in results may be due to neglecting surface charges at the waveguide's end. Clarification is sought on how the waveguide's length affects field presence and charge at the intersection with the ring.
Leopold89
Messages
59
Reaction score
5
Dear forum,

I was trying out two different approaches to calculate the dimensions of a ring resonator (sketch below) and got two slightly different solutions.
The first approach is to assume that the waveguide wavelength has to fit n times onto the circumference of the ring (taking the average of outer and inner radius): $$2\pi r = n \lambda_{waveguide}$$, with the longer waveguide wavelength. This works well.
The second approach is to solve the Laplace equation in cylindrical coordinates, yielding the condition $$J_m(\alpha r_{in})Y_m(\alpha r_{out})=J_m(\alpha r_{out})Y_m(\alpha r_{in})$$ for the radii, with $$\alpha=\frac{2\pi}{\lambda}$$ as wave number.
I noticed that the solutions to the second condition are more of less slightly off, so I wanted to ask why the second approach does not work.
My guess is that I need to take the surface charges at the end of the waveguide into account. But what I don't understand is that I would want to have the waveguide as long as half a waveguide wavelength, so wouldn't I get no field and therefore no charge at the intersection of waveguide and ring?
ring_resonator.jpg
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top