MHB How to Calculate the Values of Other Trigonometric Functions Using Given Values?

AI Thread Summary
To calculate the values of other trigonometric functions from given values, it's essential to correctly interpret the conditions provided. In this case, with $\csc\theta = -2$ and $\cot\theta > 0$, the angle $\theta$ must be in the third quadrant. The correct approach involves using identities, starting with $\sin(\theta) = \frac{1}{\csc(\theta)}$, which leads to $\sin(\theta) = -\frac{1}{2}$. Subsequently, $\cos(\theta)$ is found using the Pythagorean identity, and the remaining functions can be derived from these values. This method is preferred as it applies broadly, even when the angle $\theta$ cannot be easily solved directly.
paulmdrdo1
Messages
382
Reaction score
0
find the values of other five trig functions

$\csc\theta=-2\,and\, \cot\theta>0$

my solution

$x=-2$
$y=-1$

$r=\sqrt{5}$

$\displaystyle \sin\theta=-\frac{1}{\sqrt{5}}$

$\displaystyle\cos\theta=-\frac{2}{\sqrt{5}}$

$\displaystyle\cot\theta=2$

$\displaystyle\tan\theta=\frac{1}{2}$

$\displaystyle\sec\theta=-\frac{\sqrt{5}}{2}$

are they correct?
 
Mathematics news on Phys.org
it's not correct! use Pythagorean Identity involving sin and cos to find x.
 
Last edited:
I may have misunderstood your question, but your restrictions stated that $$\csc\theta=-2$$ whereas the value of your $\sin\theta$ was $-\frac{1}{\sqrt{5}}$, which most certainly does not satisfy $$\sin(x)=\frac{1}{\csc(x)}$$

*Edit* LATEBLOOMER beat me to it.
 
I just want to add the following:

We are told $$\csc(\theta)<0$$ and $$\cot(\theta)>0$$, and so we ask ourselves in which quadrant are both of these true. The cosecant function is negative in quadrants 3 and 4, while the cotangent function is positive in quadrants 1 and 3, so we now know $\theta$ must be in quadrant 3, i.e:

$$\pi<\theta<\frac{3\pi}{2}$$

Now, one way we could proceed is to simply solve for $\theta$ directly, and then evaluate the other 5 functions at that angle, or as suggested above, we may employ identities and definitions to get the other functions. It is usually the second of these methods that is preferred, because we won't always be able to easily solve for the angle $\theta$, and so this second method is a more general way to proceed.

If I were to solve this problem using this method, I would first look at:

$$\sin(\theta)=\frac{1}{\csc(\theta)}=?$$

Next, I would use:

$$\cos(\theta)=-\sqrt{1-\sin^2(\theta)}=?$$

Why do we take the negative root here?

Next, we may finish up with definitions:

$$\sec(\theta)=\frac{1}{\cos(\theta)}=?$$

$$\tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}=?$$

$$\cot(\theta)=\frac{1}{\tan(\theta)}=?$$

There are of course other Pythagorean identities that could be used, so my outline above is just one such way to go.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
4
Views
2K
Replies
28
Views
3K
Replies
6
Views
2K
Replies
11
Views
2K
Replies
5
Views
1K
Replies
2
Views
6K
Back
Top