How to derive plane strain bulk modulus?

  • #1

Main Question or Discussion Point

This is a hw problem and I thought about putting it in the hw section bu since its very materials science specific I decided to put it here:

For a transversely isotropic material, the “plane strain bulk modulus”, K23, is an
engineering constant that is defined by the stress condition (sigma)2 =(sigma)3=(sigma)
and the strain conditions (epsilon)1=0, (epsilon)2=(epsilon)3=(epsilon)
Show that these conditions lead to the stress-strain relationship (sigma)=2*(epsilon)*K23, and find the relationship among K23, E1, E2, G23, Mu12 (poisson's ratio).

I tried using the relationship Epsilon= stiffness matrix x stress, plugging in all the given relationships (and sigma1 is zero because epsilon1 is zero) but just got stuck at
sigma=(epsilon)*E2/(1-Mu23)
 

Answers and Replies

  • #2
26
0
if epsilon 1 =0 then sigma 1 won't be 0 because if you limit the deformation you will hava a stress
 

Related Threads on How to derive plane strain bulk modulus?

  • Last Post
Replies
2
Views
5K
  • Last Post
Replies
1
Views
7K
  • Last Post
Replies
2
Views
11K
Replies
1
Views
2K
  • Last Post
Replies
17
Views
6K
Replies
6
Views
2K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
2
Views
5K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
2
Views
3K
Top