ends
- 9
- 0
Expand the quantity (t + P)^(1/2) about 0 in terms of t/P. Give four non-zero terms.
(t + P)^(1/2) ~
=
(t + P)^(1/2) ~
=
ends said:Expand the quantity (t + P)^(1/2) about 0 in terms of t/P. Give four non-zero terms.
(t + P)^(1/2) ~
=
chisigma said:Applying the series expansion...
$\displaystyle \sqrt{1 + x} = 1 + \frac{1}{2}\ x - \frac{1}{2\ 4}\ x^{2} + \frac{1\ 3}{2\ 4\ 6}\ x^{3} - ...\ (1)$
... You obtain...
$\displaystyle \sqrt{t + P} = \sqrt{P}\ \{1 + \frac{1}{2}\ \frac{t}{P} - \frac{1}{8}\ (\frac{t}{P}^{2}) + \frac{1}{16}\ (\frac{t}{P})^{3} - ...\}\ (2)$
Kind regards
$\chi$ $\sigma$