How to express this Fourier coefficient without trig function?

  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Fourier series
Click For Summary

Homework Help Overview

The discussion revolves around expressing Fourier coefficients, specifically ##b_n##, without using trigonometric functions. Participants explore alternative representations, particularly through complex exponentials, in the context of a defined piecewise function.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants suggest using complex exponentials as a potential method for expressing the coefficients. There is an exploration of patterns in the coefficients, with attempts to formulate expressions for both even and odd indices. Questions arise regarding the clarity of the problem set and the implications of the function's periodicity and evenness.

Discussion Status

The discussion is active, with various approaches being considered. Some participants have provided specific formulations for the coefficients, while others are questioning the assumptions and definitions given in the problem set. There is no explicit consensus, but the exploration of ideas appears productive.

Contextual Notes

Participants note that the problem set may lack specificity regarding the function's definition and its periodicity. The function is defined piecewise, and there is a mention of its even nature, which seems to influence the discussion on the coefficients.

zenterix
Messages
774
Reaction score
84
Homework Statement
Consider the expression

$$b_n=\frac{4}{n\pi}\left (1-\cos{\left (n\frac{\pi}{2}\right )}\right )$$

This is the ##n##-th Fourier coefficient for sine factors for the function

$$f(t)=\begin{cases} 2\ \ \ \ \ 0<t<\pi/2 \\ 0\ \ \ \ \ \frac{\pi}{2}<t<\pi\end{cases}$$
Relevant Equations
Can we express this without the cosine?
Here is a little table I made with the values of ##b_n## for ##n=1,2,3,4,5,6##.

1709688834378.png


Is there a way to write a formula for ##b_n## not involving a trigonometric function?
 
Physics news on Phys.org
How about complex exponentials?
 
The coefficients for the cosine factors are

$$a_n=\frac{4}{n\pi}\sin{\left (n\frac{\pi}{2}\right )}$$

and noting that as ##n## varies the ##\sin## is ##1,0,-1,0,1,-1,0,\ldots## we can write

##a_{2k+1}=\frac{4(-1)^{k+1}}{\pi(2k+1)}## for ##k=0,1,2,\ldots##.

I'm looking for something similar.
 
I think what I am looking for is something like

$$b_{2k}=\frac{4}{2k\pi}(1-(-1)^k)\tag{1}$$

for ##k=1,2,3,\ldots##

and

$$b_{2k+1}=\frac{4}{(2k+1)\pi}\tag{2}$$

for ##k=0,1,2,3,\ldots##.

We could further break down (1) as

$$b_{2+4k}=b_{2(2k+1)}=\frac{4\cdot 2}{2(1+2k)\pi}=\frac{4}{(2k+1)\pi}\tag{3}$$

$$b_{4k}=0$$

Oh well, given all these cases, not sure if this is useful at all at this point.
 
Last edited:
This is all part of the first problem of this problem set.

I just looked at the solution and noticed I confused something though it is my impression that the problem set itself is the one that wasn't specific enough.

A function ##f## was defined as

$$f(t)=\begin{cases} 2\ \ \ \ \ 0<t<\pi/2 \\ 0\ \ \ \ \ \frac{\pi}{2}<t<\pi\end{cases}$$

and now I see that they explicitly said it has period ##2\pi##. I had understood that they were giving me one period's worth of function.

So the function looks like this according to the solutions

1709692916745.png


That being said, with only the definition and the information that it has (minimal) period ##2\pi##, the function could also be

1709693065172.png


right?
 
zenterix said:
right?
No. It also says that the function is even.
 
oh, right!
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K