Calculating Angular Momentum: Converting Units and Solving for Mass and Velocity

Click For Summary
The discussion focuses on calculating angular momentum using the formula kg*m/s*m, with a specific example of a train's mass and velocity. The calculation resulted in an angular momentum of 1.877 x 10^9 kg*m^2/s, which participants agree appears correct. There is a concern about potential issues with rounding affecting marks received. Additionally, ambiguity regarding the direction of the train's movement and the point's position relative to the track is noted as a possible source of confusion. Ultimately, the direction of the angular momentum vector was confirmed to be correct.
Sneakatone
Messages
318
Reaction score
0
I used kg*m/s*m

so 1500 metric tons=1500000 kg
85 km/h=23.61 m/s

( 1500000 )*23.61*53=1.877x10^9 kg*m^2/s

I feel like this is correct.
 

Attachments

  • Screen shot 2013-04-16 at 6.19.21 PM.png
    Screen shot 2013-04-16 at 6.19.21 PM.png
    34.5 KB · Views: 571
Physics news on Phys.org
1.877 x 10^9 kg*m^2/s looks right. Perhaps there's an issue with your rounding of the answer.
 
I agree with you. Maybe because you rounded down, they didn't give the mark? The one other thing that it might be, is that they don't actually say which direction the train is moving in. They just say where the point is in relation to the track. The natural assumption is to do as you did, and assume they mean that if the point is 'to the left' of the train, then that means someone who is facing forward on the train will see the point on their left. But there is an ambiguity here. Maybe they took it to be the other way around.
 
I origionally put 1.8 instead of 1.877 but your right, thanks!
 
BruceW said:
I agree with you. Maybe because you rounded down, they didn't give the mark? The one other thing that it might be, is that they don't actually say which direction the train is moving in. They just say where the point is in relation to the track. The natural assumption is to do as you did, and assume they mean that if the point is 'to the left' of the train, then that means someone who is facing forward on the train will see the point on their left. But there is an ambiguity here. Maybe they took it to be the other way around.

The direction "upwards" for the angular momentum vector was marked correct, so it looks like the assumption panned out.
 
oh yeah. good, good.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
810
Replies
18
Views
7K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
8K
Replies
10
Views
2K
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 13 ·
Replies
13
Views
1K