MHB How to find composition of f ° g and g ° f ?

  • Thread starter Thread starter Henry R
  • Start date Start date
  • Tags Tags
    Composition
Henry R
Messages
25
Reaction score
0
Let f and g be function from the positive integer defined by the following pairs f : N →R,g∶N →R. Find the composition f ° g and g ° f.A)

F(n) = log(n+3)

g(n) = log log(n + 10)
....................
B)

F(n) = n log(n+2)

g(n) = n^(1.1)
....................

Could you guys give me answer? Anybody? Please..

Here is my answer for the other question...

f(n)= n + 60 g(n) = 100n

and my answer is this ;
f ° g = 100n + 60

g ° f = 100 ( n + 60 )
= 100n + 6000.

So, can you guys answer the question of A and B?
 
Mathematics news on Phys.org
Henry R said:
Let f and g be function from the positive integer defined by the following pairs f : N →R,g∶N →R. Find the composition f ° g and g ° f.
If a factory $X$ converts iron ore into iron and you want to use that iron somewhere else, you would need to find another factory that takes iron as input. It won't work to find a factory $Y$ that converts cotton into clothes and try to combine them as in $Y\circ X$. Similarly, you can't feed the output of $f$ into $g$ because $f$ outputs real numbers, such as $\pi$ and $e$, and $g$ expects natural numbers as input.

I assume that in $f\circ g$ the function $g$ is applied first. This is the most prevalent convention, and your example with $f(n)= n + 60$ and $g(n) = 100n$ follows it. However, there are some sources that use the opposite order.

If $f:\Bbb R\to\Bbb R$ and $g:\Bbb R\to\Bbb R$, then the rule of finding $f\circ g$ is the following. Write the definition of $f(x)$ and replace $x$ with the definition of $g(x)$. By definitions I mean the right-hand sides of equalities defining $f$ and $g$. So, in A) the definition of $f(x)$ is $\log(x+3)$ and the definition of $g(x)$ is $\log\log(x + 10)$. Replacing every occurrence of $x$ in the first expression by the second expression, we get $\log(\log\log(x + 10)+3)$. Now I suggest you try finding $g\circ f$.

Note also that in mathematics lowercase and uppercase letters may denote different entities, so $f$ and $F$ may well be different functions and should not be confused.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
4
Views
2K
Replies
4
Views
1K
Replies
4
Views
2K
Replies
2
Views
998
Replies
2
Views
2K
Back
Top