How to find deceleration up incline

AI Thread Summary
To find the deceleration of an object moving up an incline, it's essential to draw a Free Body Diagram (FBD) to identify the forces acting on the block. The net force can be determined from the FBD, which will help in calculating the initial acceleration. The relevant equation provided, a = g sin theta - u g cos theta, should be applied carefully, considering the different phases of motion separately. It's important to analyze both the upward and downward movements to accurately solve for the initial acceleration. Understanding these forces and their effects is crucial for solving the problem effectively.
xwalsh
Messages
1
Reaction score
0
Homework Statement
Use Newton's Laws to find the speed of the block when it returns to its original location.
Relevant Equations
a = g sin theta - u g cos theta
Basically the problem is giving me an initial velocity to start with it goes up the incline before it comes back down. I know how to do everything else in the problem but solve for the initial acceleration up the incline. What would I need to calculate to solve this?
Screenshot 2021-12-15 211539.png
 
Physics news on Phys.org
Hi xwalsh, Welcome to Physics Forums.

Have you drawn a Free Body Diagram (FBD) for the block to show the forces acting? What does it tell you about the net force acting on the block?
 
xwalsh said:
Relevant Equations:: a = g sin theta - u g cos theta
That equation does not apply throughout the sequence. Rather than use it blindly, follow @gneill's advice to draw FBDs, but consider the up and down phases separately..
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top